These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 24657780)
1. Reduction of motion-related artifacts in resting state fMRI using aCompCor. Muschelli J; Nebel MB; Caffo BS; Barber AD; Pekar JJ; Mostofsky SH Neuroimage; 2014 Aug; 96():22-35. PubMed ID: 24657780 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. Pruim RHR; Mennes M; Buitelaar JK; Beckmann CF Neuroimage; 2015 May; 112():278-287. PubMed ID: 25770990 [TBL] [Abstract][Full Text] [Related]
3. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Parkes L; Fulcher B; Yücel M; Fornito A Neuroimage; 2018 May; 171():415-436. PubMed ID: 29278773 [TBL] [Abstract][Full Text] [Related]
4. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Power JD; Mitra A; Laumann TO; Snyder AZ; Schlaggar BL; Petersen SE Neuroimage; 2014 Jan; 84():320-41. PubMed ID: 23994314 [TBL] [Abstract][Full Text] [Related]
5. Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data. Bright MG; Murphy K Neuroimage; 2013 Jan; 64(6):526-37. PubMed ID: 23006803 [TBL] [Abstract][Full Text] [Related]
6. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Satterthwaite TD; Elliott MA; Gerraty RT; Ruparel K; Loughead J; Calkins ME; Eickhoff SB; Hakonarson H; Gur RC; Gur RE; Wolf DH Neuroimage; 2013 Jan; 64():240-56. PubMed ID: 22926292 [TBL] [Abstract][Full Text] [Related]
7. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Hallquist MN; Hwang K; Luna B Neuroimage; 2013 Nov; 82():208-25. PubMed ID: 23747457 [TBL] [Abstract][Full Text] [Related]
8. Combining Prospective Acquisition CorrEction (PACE) with retrospective correction to reduce motion artifacts in resting state fMRI data. Lanka P; Deshpande G Brain Behav; 2019 Aug; 9(8):e01341. PubMed ID: 31297966 [TBL] [Abstract][Full Text] [Related]
9. Isolation and minimization of head motion-induced signal variations in fMRI data using independent component analysis. Liao R; McKeown MJ; Krolik JL Magn Reson Med; 2006 Jun; 55(6):1396-413. PubMed ID: 16676336 [TBL] [Abstract][Full Text] [Related]
10. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series. Patel AX; Kundu P; Rubinov M; Jones PS; Vértes PE; Ersche KD; Suckling J; Bullmore ET Neuroimage; 2014 Jul; 95(100):287-304. PubMed ID: 24657353 [TBL] [Abstract][Full Text] [Related]
11. On applicability of PCA, voxel-wise variance normalization and dimensionality assumptions for sliding temporal window sICA in resting-state fMRI. Remes JJ; Abou Elseoud A; Ollila E; Haapea M; Starck T; Nikkinen J; Tervonen O; Silven O Magn Reson Imaging; 2013 Oct; 31(8):1338-48. PubMed ID: 23845397 [TBL] [Abstract][Full Text] [Related]
12. The optimized combination of aCompCor and ICA-AROMA to reduce motion and physiologic noise in task fMRI data. Van Schuerbeek P; De Wandel L; Baeken C Biomed Phys Eng Express; 2022 Jul; 8(5):. PubMed ID: 35378526 [TBL] [Abstract][Full Text] [Related]
13. Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion. Morgan VL; Dawant BM; Li Y; Pickens DR Comput Med Imaging Graph; 2007 Sep; 31(6):436-46. PubMed ID: 17574816 [TBL] [Abstract][Full Text] [Related]
14. Spin saturation artifact correction using slice-to-volume registration motion estimates for fMRI time series. Bhagalia R; Kim B Med Phys; 2008 Feb; 35(2):424-34. PubMed ID: 18383662 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of multi-echo ICA denoising for task based fMRI studies: Block designs, rapid event-related designs, and cardiac-gated fMRI. Gonzalez-Castillo J; Panwar P; Buchanan LC; Caballero-Gaudes C; Handwerker DA; Jangraw DC; Zachariou V; Inati S; Roopchansingh V; Derbyshire JA; Bandettini PA Neuroimage; 2016 Nov; 141():452-468. PubMed ID: 27475290 [TBL] [Abstract][Full Text] [Related]
16. Making the most of fMRI at 7 T by suppressing spontaneous signal fluctuations. Bianciardi M; van Gelderen P; Duyn JH; Fukunaga M; de Zwart JA Neuroimage; 2009 Jan; 44(2):448-54. PubMed ID: 18835582 [TBL] [Abstract][Full Text] [Related]
17. A multi-measure approach for assessing the performance of fMRI preprocessing strategies in resting-state functional connectivity. Kassinopoulos M; Mitsis GD Magn Reson Imaging; 2022 Jan; 85():228-250. PubMed ID: 34715292 [TBL] [Abstract][Full Text] [Related]
18. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Pruim RHR; Mennes M; van Rooij D; Llera A; Buitelaar JK; Beckmann CF Neuroimage; 2015 May; 112():267-277. PubMed ID: 25770991 [TBL] [Abstract][Full Text] [Related]
19. A novel approach for global noise reduction in resting-state fMRI: APPLECOR. Marx M; Pauly KB; Chang C Neuroimage; 2013 Jan; 64():19-31. PubMed ID: 23022327 [TBL] [Abstract][Full Text] [Related]
20. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]