BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 24657907)

  • 1. Statistical model based 3D shape prediction of postoperative trunks for non-invasive scoliosis surgery planning.
    Assi KC; Labelle H; Cheriet F
    Comput Biol Med; 2014 May; 48():85-93. PubMed ID: 24657907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A physically based trunk soft tissue modeling for scoliosis surgery planning systems.
    Assi KC; Grenier S; Parent S; Labelle H; Cheriet F
    Comput Med Imaging Graph; 2015 Mar; 40():217-28. PubMed ID: 25465069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy, reliability, and validity of a 3-dimensional scanner for assessing torso shape in idiopathic scoliosis.
    Gorton GE; Young ML; Masso PD
    Spine (Phila Pa 1976); 2012 May; 37(11):957-65. PubMed ID: 22020589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral Shape Analysis of Human Torsos: Application to the Evaluation of Scoliosis Surgery Outcome.
    Ahmad O; Lombaert H; Parent S; Labelle H; Cheriet F
    IEEE J Biomed Health Inform; 2018 Sep; 22(5):1552-1560. PubMed ID: 29028215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scoliosis follow-up using noninvasive trunk surface acquisition.
    Adankon MM; Chihab N; Dansereau J; Labelle H; Cheriet F
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2262-70. PubMed ID: 23508244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non invasive clinical assessment of trunk deformities associated with scoliosis.
    Seoud L; Dansereau J; Labelle H; Cheriet F
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):392-401. PubMed ID: 23047883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Objective quantification of intervertebral disc volume properties using MRI in idiopathic scoliosis surgery.
    Violas P; Estivalezes E; Briot J; Sales de Gauzy J; Swider P
    Magn Reson Imaging; 2007 Apr; 25(3):386-91. PubMed ID: 17371729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non invasive classification system of scoliosis curve types using least-squares support vector machines.
    Adankon MM; Dansereau J; Labelle H; Cheriet F
    Artif Intell Med; 2012 Oct; 56(2):99-107. PubMed ID: 23017984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimodal image registration of the scoliotic torso for surgical planning.
    Harmouche R; Cheriet F; Labelle H; Dansereau J
    BMC Med Imaging; 2013 Jan; 13():1. PubMed ID: 23289431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EOS 3D Imaging: assessing the impact of brace treatment in adolescent idiopathic scoliosis.
    Courvoisier A; Vialle R; Skalli W
    Expert Rev Med Devices; 2014 Jan; 11(1):1-3. PubMed ID: 24251596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fuzzy-logic-assisted surgical planning in adolescent idiopathic scoliosis.
    Nault ML; Labelle H; Aubin CE; Sangole A; Balazinski M
    J Spinal Disord Tech; 2009 Jun; 22(4):263-9. PubMed ID: 19494746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rasterstereographic evaluation of interobserver and intraobserver reliability in postsurgical adolescent idiopathic scoliosis patients.
    Schülein S; Mendoza S; Malzkorn R; Harms J; Skwara A
    J Spinal Disord Tech; 2013 Jun; 26(4):E143-9. PubMed ID: 23249884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional imaging for the surgical treatment of idiopathic scoliosis in adolescents.
    Petit Y; Aubin CE; Labelle H
    Can J Surg; 2002 Dec; 45(6):453-8. PubMed ID: 12500925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Lenke classification of adolescent idiopathic scoliosis: how it organizes curve patterns as a template to perform selective fusions of the spine.
    Lenke LG; Edwards CC; Bridwell KH
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S199-207. PubMed ID: 14560193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovative decision support for scoliosis brace therapy based on statistical modelling of markerless 3D trunk surface data.
    Rothstock S; Weiss HR; Krueger D; Kleban V; Paul L
    Comput Methods Biomech Biomed Engin; 2020 Oct; 23(13):923-933. PubMed ID: 32543233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validating an imaging and analysis system for assessing torso deformities.
    Ajemba PO; Durdle NG; Hill DL; Raso VJ
    Comput Biol Med; 2008 Mar; 38(3):294-303. PubMed ID: 18062949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing torso shape deformity in scoliosis using structured splines models.
    Ajemba PO; Durdle NG; Raso VJ
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1652-62. PubMed ID: 19389691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-processing range data for the analysis of torso shape and symmetry of scoliosis patients.
    Kumar A; Ajemba P; Durdle N; Raso J
    Stud Health Technol Inform; 2006; 123():483-7. PubMed ID: 17108472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel mathematical model of the sagittal spine: application to pedicle subtraction osteotomy for correction of fixed sagittal deformity.
    Yang BP; Chen LA; Ondra SL
    Spine J; 2008; 8(2):359-66. PubMed ID: 17697800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Back pain and function 23 years after fusion for adolescent idiopathic scoliosis: a case-control study-part II.
    Danielsson AJ; Nachemson AL
    Spine (Phila Pa 1976); 2003 Sep; 28(18):E373-83. PubMed ID: 14501939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.