These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 24658060)
21. Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity. Kang HW; Cho DW Tissue Eng Part C Methods; 2012 Sep; 18(9):719-29. PubMed ID: 22443315 [TBL] [Abstract][Full Text] [Related]
22. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056 [TBL] [Abstract][Full Text] [Related]
23. Bone Morphogenetic Protein-2-Activated 3D-Printed Polylactic Acid Scaffolds to Promote Bone Regrowth and Repair. Yao CH; Lai YH; Chen YW; Cheng CH Macromol Biosci; 2020 Oct; 20(10):e2000161. PubMed ID: 32749079 [TBL] [Abstract][Full Text] [Related]
24. Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering. Trachtenberg JE; Mountziaris PM; Miller JS; Wettergreen M; Kasper FK; Mikos AG J Biomed Mater Res A; 2014 Dec; 102(12):4326-35. PubMed ID: 25493313 [TBL] [Abstract][Full Text] [Related]
25. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Park SA; Lee SH; Kim WD Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553 [TBL] [Abstract][Full Text] [Related]
26. Characterization of designed directional polylactic acid 3D scaffolds for neural differentiation of human dental pulp stem cells. Hsiao D; Hsu SH; Chen RS; Chen MH J Formos Med Assoc; 2020 Jan; 119(1 Pt 2):268-275. PubMed ID: 31155229 [TBL] [Abstract][Full Text] [Related]
27. Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. Heo SJ; Kim SE; Wei J; Hyun YT; Yun HS; Kim DH; Shin JW; Shin JW J Biomed Mater Res A; 2009 Apr; 89(1):108-16. PubMed ID: 18431758 [TBL] [Abstract][Full Text] [Related]
28. Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system. Kim JY; Yoon JJ; Park EK; Kim DS; Kim SY; Cho DW Biofabrication; 2009 Mar; 1(1):015002. PubMed ID: 20811097 [TBL] [Abstract][Full Text] [Related]
30. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [TBL] [Abstract][Full Text] [Related]
31. Fabrication and material properties of fibrous PHBV scaffolds depending on the cross-ply angle for tissue engineering. Kim YH; Min YK; Lee BT J Biomater Appl; 2012 Nov; 27(4):457-68. PubMed ID: 22071348 [TBL] [Abstract][Full Text] [Related]
32. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Park SH; Kim TG; Kim HC; Yang DY; Park TG Acta Biomater; 2008 Sep; 4(5):1198-207. PubMed ID: 18458008 [TBL] [Abstract][Full Text] [Related]
33. Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering. Butscher A; Bohner M; Doebelin N; Galea L; Loeffel O; Müller R Acta Biomater; 2013 Feb; 9(2):5369-78. PubMed ID: 23069318 [TBL] [Abstract][Full Text] [Related]
34. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Butscher A; Bohner M; Hofmann S; Gauckler L; Müller R Acta Biomater; 2011 Mar; 7(3):907-20. PubMed ID: 20920616 [TBL] [Abstract][Full Text] [Related]
35. Effects of poly (ε-caprolactone) coating on the properties of three-dimensional printed porous structures. Zhou Z; Cunningham E; Lennon A; McCarthy HO; Buchanan F; Clarke SA; Dunne N J Mech Behav Biomed Mater; 2017 Jun; 70():68-83. PubMed ID: 27233445 [TBL] [Abstract][Full Text] [Related]
36. Indirect Rapid Prototyping: Opening Up Unprecedented Opportunities in Scaffold Design and Applications. Houben A; Van Hoorick J; Van Erps J; Thienpont H; Van Vlierberghe S; Dubruel P Ann Biomed Eng; 2017 Jan; 45(1):58-83. PubMed ID: 27080376 [TBL] [Abstract][Full Text] [Related]
37. A smart scaffold composed of three-dimensional printing and electrospinning techniques and its application in rat abdominal wall defects. Yang Z; Song Z; Nie X; Guo K; Gu Y Stem Cell Res Ther; 2020 Dec; 11(1):533. PubMed ID: 33303038 [TBL] [Abstract][Full Text] [Related]
38. Fabrication of computationally designed scaffolds by low temperature 3D printing. Castilho M; Dias M; Gbureck U; Groll J; Fernandes P; Pires I; Gouveia B; Rodrigues J; Vorndran E Biofabrication; 2013 Sep; 5(3):035012. PubMed ID: 23887064 [TBL] [Abstract][Full Text] [Related]
39. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Mondschein RJ; Kanitkar A; Williams CB; Verbridge SS; Long TE Biomaterials; 2017 Sep; 140():170-188. PubMed ID: 28651145 [TBL] [Abstract][Full Text] [Related]
40. Effect of scaffold architecture and pore size on smooth muscle cell growth. Lee M; Wu BM; Dunn JC J Biomed Mater Res A; 2008 Dec; 87(4):1010-6. PubMed ID: 18257081 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]