BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 24658095)

  • 21. Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli.
    Rodrigue A; Effantin G; Mandrand-Berthelot MA
    J Bacteriol; 2005 Apr; 187(8):2912-6. PubMed ID: 15805538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phylogenomic analysis of Cation Diffusion Facilitator proteins uncovers Ni2+/Co2+ transporters.
    Cubillas C; Vinuesa P; Tabche ML; García-de los Santos A
    Metallomics; 2013 Dec; 5(12):1634-43. PubMed ID: 24077251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. C-terminal domain of the membrane copper transporter Ctr1 from Saccharomyces cerevisiae binds four Cu(I) ions as a cuprous-thiolate polynuclear cluster: sub-femtomolar Cu(I) affinity of three proteins involved in copper trafficking.
    Xiao Z; Loughlin F; George GN; Howlett GJ; Wedd AG
    J Am Chem Soc; 2004 Mar; 126(10):3081-90. PubMed ID: 15012137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nickel binding and [NiFe]-hydrogenase maturation by the metallochaperone SlyD with a single metal-binding site in Escherichia coli.
    Kaluarachchi H; Altenstein M; Sugumar SR; Balbach J; Zamble DB; Haupt C
    J Mol Biol; 2012 Mar; 417(1-2):28-35. PubMed ID: 22310044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ni exposure impacts the pool of free Fe and modifies DNA supercoiling via metal-induced oxidative stress in Escherichia coli K-12.
    Gault M; Effantin G; Rodrigue A
    Free Radic Biol Med; 2016 Aug; 97():351-361. PubMed ID: 27375130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insight into the cation-π interaction at the metal binding site of the copper metallochaperone CusF.
    Chakravorty DK; Wang B; Ucisik MN; Merz KM
    J Am Chem Soc; 2011 Dec; 133(48):19330-3. PubMed ID: 22029374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of select histidine to cysteine mutations on transcriptional regulation by Escherichia coli RcnR.
    Higgins KA; Hu HQ; Chivers PT; Maroney MJ
    Biochemistry; 2013 Jan; 52(1):84-97. PubMed ID: 23215580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. N-terminal region of CusB is sufficient for metal binding and metal transfer with the metallochaperone CusF.
    Mealman TD; Zhou M; Affandi T; Chacón KN; Aranguren ME; Blackburn NJ; Wysocki VH; McEvoy MM
    Biochemistry; 2012 Aug; 51(34):6767-75. PubMed ID: 22812620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coordination of Ni2+ and Cu2+ to metal ion binding domains of E. coli SlyD protein.
    Witkowska D; Valensin D; Rowinska-Zyrek M; Karafova A; Kamysz W; Kozlowski H
    J Inorg Biochem; 2012 Feb; 107(1):73-81. PubMed ID: 22178668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Ni(II)-binding properties of the metallochaperone SlyD.
    Kaluarachchi H; Sutherland DE; Young A; Pickering IJ; Stillman MJ; Zamble DB
    J Am Chem Soc; 2009 Dec; 131(51):18489-500. PubMed ID: 19947632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular structure and metal-binding properties of the periplasmic CopK protein expressed in Cupriavidus metallidurans CH34 during copper challenge.
    Bersch B; Favier A; Schanda P; van Aelst S; Vallaeys T; Covès J; Mergeay M; Wattiez R
    J Mol Biol; 2008 Jul; 380(2):386-403. PubMed ID: 18533181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective lead adsorption by recombinant Escherichia coli displaying a lead-binding peptide.
    Nguyen TT; Lee HR; Hong SH; Jang JR; Choe WS; Yoo IK
    Appl Biochem Biotechnol; 2013 Feb; 169(4):1188-96. PubMed ID: 23306894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cytosolic Copper Binding by a Bacterial Storage Protein and Interplay with Copper Efflux.
    Lee J; Dennison C
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31450649
    [No Abstract]   [Full Text] [Related]  

  • 35. Structural and biological analysis of the metal sites of Escherichia coli hydrogenase accessory protein HypB.
    Dias AV; Mulvihill CM; Leach MR; Pickering IJ; George GN; Zamble DB
    Biochemistry; 2008 Nov; 47(46):11981-91. PubMed ID: 18942856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cu(I) recognition via cation-pi and methionine interactions in CusF.
    Xue Y; Davis AV; Balakrishnan G; Stasser JP; Staehlin BM; Focia P; Spiro TG; Penner-Hahn JE; O'Halloran TV
    Nat Chem Biol; 2008 Feb; 4(2):107-9. PubMed ID: 18157124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins.
    Chacón KN; Mealman TD; McEvoy MM; Blackburn NJ
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15373-8. PubMed ID: 25313055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strength of Cu-efflux response in Escherichia coli coordinates metal resistance in Caenorhabditis elegans and contributes to the severity of environmental toxicity.
    Shafer CM; Tseng A; Allard P; McEvoy MM
    J Biol Chem; 2021 Sep; 297(3):101060. PubMed ID: 34375643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potassium is critical for the Ni(II)-responsive DNA-binding activity of Escherichia coli NikR.
    Wang SC; Li Y; Robinson CV; Zamble DB
    J Am Chem Soc; 2010 Feb; 132(5):1506-7. PubMed ID: 20088519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study on the inhibition kinetics of bioaccumulation of Cu(II) and Ni(II) ions using Rhizopus delemar.
    Açikel U; Alp T
    J Hazard Mater; 2009 Sep; 168(2-3):1449-58. PubMed ID: 19362774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.