These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24658097)

  • 1. Beyond a climate-centric view of plant distribution: edaphic variables add value to distribution models.
    Beauregard F; de Blois S
    PLoS One; 2014; 9(3):e92642. PubMed ID: 24658097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using worldwide edaphic data to model plant species niches: An assessment at a continental extent.
    Velazco SJE; Galvão F; Villalobos F; De Marco Júnior P
    PLoS One; 2017; 12(10):e0186025. PubMed ID: 29049298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using climatic variables alone overestimate climate change impacts on predicting distribution of an endemic species.
    Zangiabadi S; Zaremaivan H; Brotons L; Mostafavi H; Ranjbar H
    PLoS One; 2021; 16(9):e0256918. PubMed ID: 34473770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local topographic and edaphic factors largely predict shrub encroachment in Mediterranean drylands.
    Nunes A; Köbel M; Pinho P; Matos P; Costantini EAC; Soares C; de Bello F; Correia O; Branquinho C
    Sci Total Environ; 2019 Mar; 657():310-318. PubMed ID: 30543980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tree species distribution in temperate forests is more influenced by soil than by climate.
    Walthert L; Meier ES
    Ecol Evol; 2017 Nov; 7(22):9473-9484. PubMed ID: 29187983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant species' range type determines local responses to biotic interactions and land use.
    Welk A; Welk E; Baudis M; Böckelmann J; Bruelheide H
    Ecology; 2019 Dec; 100(12):e02890. PubMed ID: 31509229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial heterogeneity of climate explains plant richness distribution at the regional scale in India.
    Tripathi P; Behera MD; Roy PS
    PLoS One; 2019; 14(6):e0218322. PubMed ID: 31220130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accessing habitat suitability and connectivity for the westernmost population of Asian black bear (Ursus thibetanus gedrosianus, Blanford, 1877) based on climate changes scenarios in Iran.
    Morovati M; Karami P; Bahadori Amjas F
    PLoS One; 2020; 15(11):e0242432. PubMed ID: 33206701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climatic associations of British species distributions show good transferability in time but low predictive accuracy for range change.
    Rapacciuolo G; Roy DB; Gillings S; Fox R; Walker K; Purvis A
    PLoS One; 2012; 7(7):e40212. PubMed ID: 22792243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivariate ordination approach for identification of sub-regional homogeneities in Gujarat, western India.
    Dixit AM; Geevan CP
    J Environ Manage; 2002 Jan; 64(1):13-23. PubMed ID: 11876070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model.
    Gogol-Prokurat M
    Ecol Appl; 2011 Jan; 21(1):33-47. PubMed ID: 21516886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate change and biological invasions: evidence, expectations, and response options.
    Hulme PE
    Biol Rev Camb Philos Soc; 2017 Aug; 92(3):1297-1313. PubMed ID: 27241717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity.
    Matías L; Linares JC; Sánchez-Miranda Á; Jump AS
    Glob Chang Biol; 2017 Oct; 23(10):4106-4116. PubMed ID: 28100041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can we predict which species win when new habitat becomes available?
    Nomura M; Ohlemüller R; Lee WG; Lloyd KM; Anderson BJ
    PLoS One; 2019; 14(9):e0213634. PubMed ID: 31509530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal - A Demonstration Using Bird and Mammal Range Maps.
    Boucher-Lalonde V; Currie DJ
    PLoS One; 2016; 11(11):e0166243. PubMed ID: 27855201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts.
    Tanner EP; Papeş M; Elmore RD; Fuhlendorf SD; Davis CA
    PLoS One; 2017; 12(9):e0184316. PubMed ID: 28886075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.
    Casajus N; Périé C; Logan T; Lambert MC; de Blois S; Berteaux D
    PLoS One; 2016; 11(3):e0152495. PubMed ID: 27015274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climatic water availability is the main limiting factor of biotic attributes across large-scale elevational gradients in tropical forests.
    Ali A; Lin SL; He JK; Kong FM; Yu JH; Jiang HS
    Sci Total Environ; 2019 Jan; 647():1211-1221. PubMed ID: 30180329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictors of contraction and expansion of area of occupancy for British birds.
    Bradshaw CJ; Brook BW; Delean S; Fordham DA; Herrando-Pérez S; Cassey P; Early R; Sekercioglu CH; Araújo MB
    Proc Biol Sci; 2014 Jul; 281(1786):. PubMed ID: 24827448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of climatic and edaphic factors on the diversity, structure and biomass of species-poor and structurally-complex forests.
    Ali A; Sanaei A; Li M; Nalivan OA; Ahmadaali K; Pour MJ; Valipour A; Karami J; Aminpour M; Kaboli H; Askari Y
    Sci Total Environ; 2020 Mar; 706():135719. PubMed ID: 31940728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.