BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24658252)

  • 1. Three-dimensional transcranial ultrasound imaging of microbubble clouds using a sparse hemispherical array.
    O'Reilly MA; Jones RM; Hynynen K
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1285-94. PubMed ID: 24658252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping.
    Deng L; O'Reilly MA; Jones RM; An R; Hynynen K
    Phys Med Biol; 2016 Dec; 61(24):8476-8501. PubMed ID: 27845920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A PVDF receiver for ultrasound monitoring of transcranial focused ultrasound therapy.
    O'Reilly MA; Hynynen K
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2286-94. PubMed ID: 20515709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional transcranial microbubble imaging for guiding volumetric ultrasound-mediated blood-brain barrier opening.
    Jones RM; Deng L; Leung K; McMahon D; O'Reilly MA; Hynynen K
    Theranostics; 2018; 8(11):2909-2926. PubMed ID: 29896293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies.
    Arvanitis CD; McDannold N
    Med Phys; 2013 Nov; 40(11):112901. PubMed ID: 24320468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study.
    Jones RM; O'Reilly MA; Hynynen K
    Phys Med Biol; 2013 Jul; 58(14):4981-5005. PubMed ID: 23807573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast three-dimensional microbubble imaging
    Jones RM; McMahon D; Hynynen K
    Theranostics; 2020; 10(16):7211-7230. PubMed ID: 32641988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections.
    Jones RM; O'Reilly MA; Hynynen K
    Med Phys; 2015 Jul; 42(7):4385-400. PubMed ID: 26133635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device.
    Crake C; Brinker ST; Coviello CM; Livingstone MS; McDannold NJ
    Phys Med Biol; 2018 Mar; 63(6):065008. PubMed ID: 29459494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array.
    Acconcia CN; Jones RM; Goertz DE; O'Reilly MA; Hynynen K
    Phys Med Biol; 2017 Sep; 62(18):L31-L40. PubMed ID: 28786395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of acoustic cavitation in microbubble-presented focused ultrasound exposure using gradient-echo MRI.
    Wu CH; Liu HL; Ho CT; Hsu PH; Fan CH; Yeh CK; Kang ST; Chen WS; Wang FN; Peng HH
    J Magn Reson Imaging; 2020 Jan; 51(1):311-318. PubMed ID: 31125166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-D Transcranial Microbubble Cavitation Localization by Four Sensors.
    Hu Z; Xu L; Chien CY; Yang Y; Gong Y; Ye D; Pacia CP; Chen H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3336-3346. PubMed ID: 34166187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler.
    Errico C; Osmanski BF; Pezet S; Couture O; Lenkei Z; Tanter M
    Neuroimage; 2016 Jan; 124(Pt A):752-761. PubMed ID: 26416649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening.
    Sun T; Samiotaki G; Wang S; Acosta C; Chen CC; Konofagou EE
    Phys Med Biol; 2015 Dec; 60(23):9079-94. PubMed ID: 26562661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature.
    Gâteau J; Marsac L; Pernot M; Aubry JF; Tanter M; Fink M
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):134-44. PubMed ID: 19770084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model.
    Arvanitis CD; Vykhodtseva N; Jolesz F; Livingstone M; McDannold N
    J Neurosurg; 2016 May; 124(5):1450-9. PubMed ID: 26381252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles.
    Tung YS; Choi JJ; Baseri B; Konofagou EE
    Ultrasound Med Biol; 2010 May; 36(5):840-52. PubMed ID: 20420973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain.
    Arvanitis CD; Livingstone MS; McDannold N
    Phys Med Biol; 2013 Jul; 58(14):4749-61. PubMed ID: 23788054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A PVDF Receiver for Acoustic Monitoring of Microbubble-Mediated Ultrasound Brain Therapy.
    Lin Y; O'Reilly MA; Hynynen K
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring.
    Arvanitis CD; Livingstone MS; Vykhodtseva N; McDannold N
    PLoS One; 2012; 7(9):e45783. PubMed ID: 23029240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.