These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 24658252)
1. Three-dimensional transcranial ultrasound imaging of microbubble clouds using a sparse hemispherical array. O'Reilly MA; Jones RM; Hynynen K IEEE Trans Biomed Eng; 2014 Apr; 61(4):1285-94. PubMed ID: 24658252 [TBL] [Abstract][Full Text] [Related]
2. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. Deng L; O'Reilly MA; Jones RM; An R; Hynynen K Phys Med Biol; 2016 Dec; 61(24):8476-8501. PubMed ID: 27845920 [TBL] [Abstract][Full Text] [Related]
3. A PVDF receiver for ultrasound monitoring of transcranial focused ultrasound therapy. O'Reilly MA; Hynynen K IEEE Trans Biomed Eng; 2010 Sep; 57(9):2286-94. PubMed ID: 20515709 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional transcranial microbubble imaging for guiding volumetric ultrasound-mediated blood-brain barrier opening. Jones RM; Deng L; Leung K; McMahon D; O'Reilly MA; Hynynen K Theranostics; 2018; 8(11):2909-2926. PubMed ID: 29896293 [TBL] [Abstract][Full Text] [Related]
5. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies. Arvanitis CD; McDannold N Med Phys; 2013 Nov; 40(11):112901. PubMed ID: 24320468 [TBL] [Abstract][Full Text] [Related]
6. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study. Jones RM; O'Reilly MA; Hynynen K Phys Med Biol; 2013 Jul; 58(14):4981-5005. PubMed ID: 23807573 [TBL] [Abstract][Full Text] [Related]
8. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections. Jones RM; O'Reilly MA; Hynynen K Med Phys; 2015 Jul; 42(7):4385-400. PubMed ID: 26133635 [TBL] [Abstract][Full Text] [Related]
9. A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device. Crake C; Brinker ST; Coviello CM; Livingstone MS; McDannold NJ Phys Med Biol; 2018 Mar; 63(6):065008. PubMed ID: 29459494 [TBL] [Abstract][Full Text] [Related]
10. Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array. Acconcia CN; Jones RM; Goertz DE; O'Reilly MA; Hynynen K Phys Med Biol; 2017 Sep; 62(18):L31-L40. PubMed ID: 28786395 [TBL] [Abstract][Full Text] [Related]
11. Monitoring of acoustic cavitation in microbubble-presented focused ultrasound exposure using gradient-echo MRI. Wu CH; Liu HL; Ho CT; Hsu PH; Fan CH; Yeh CK; Kang ST; Chen WS; Wang FN; Peng HH J Magn Reson Imaging; 2020 Jan; 51(1):311-318. PubMed ID: 31125166 [TBL] [Abstract][Full Text] [Related]
12. 3-D Transcranial Microbubble Cavitation Localization by Four Sensors. Hu Z; Xu L; Chien CY; Yang Y; Gong Y; Ye D; Pacia CP; Chen H IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Nov; 68(11):3336-3346. PubMed ID: 34166187 [TBL] [Abstract][Full Text] [Related]
13. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler. Errico C; Osmanski BF; Pezet S; Couture O; Lenkei Z; Tanter M Neuroimage; 2016 Jan; 124(Pt A):752-761. PubMed ID: 26416649 [TBL] [Abstract][Full Text] [Related]
14. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening. Sun T; Samiotaki G; Wang S; Acosta C; Chen CC; Konofagou EE Phys Med Biol; 2015 Dec; 60(23):9079-94. PubMed ID: 26562661 [TBL] [Abstract][Full Text] [Related]
15. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature. Gâteau J; Marsac L; Pernot M; Aubry JF; Tanter M; Fink M IEEE Trans Biomed Eng; 2010 Jan; 57(1):134-44. PubMed ID: 19770084 [TBL] [Abstract][Full Text] [Related]
16. Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model. Arvanitis CD; Vykhodtseva N; Jolesz F; Livingstone M; McDannold N J Neurosurg; 2016 May; 124(5):1450-9. PubMed ID: 26381252 [TBL] [Abstract][Full Text] [Related]
17. Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles. Tung YS; Choi JJ; Baseri B; Konofagou EE Ultrasound Med Biol; 2010 May; 36(5):840-52. PubMed ID: 20420973 [TBL] [Abstract][Full Text] [Related]
18. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain. Arvanitis CD; Livingstone MS; McDannold N Phys Med Biol; 2013 Jul; 58(14):4749-61. PubMed ID: 23788054 [TBL] [Abstract][Full Text] [Related]
19. A PVDF Receiver for Acoustic Monitoring of Microbubble-Mediated Ultrasound Brain Therapy. Lin Y; O'Reilly MA; Hynynen K Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772406 [TBL] [Abstract][Full Text] [Related]