These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 2465828)

  • 1. Fluorescence spectral resolution of myelin basic protein conformers in complexes with lysophosphatidylcholine.
    Cavatorta P; Masotti L; Szabo AG; Juretic D; Riccio P; Quagliariello E
    Cell Biophys; 1988 Dec; 13(3):201-15. PubMed ID: 2465828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myelin basic protein interaction with zinc and phosphate: fluorescence studies on the water-soluble form of the protein.
    Cavatorta P; Giovanelli S; Bobba A; Riccio P; Szabo AG; Quagliariello E
    Biophys J; 1994 Apr; 66(4):1174-9. PubMed ID: 7518704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactions of fluorescent probes with normal and chemically modified myelin basic protein and proteolipid. Comparisons with myelin.
    Feinstein MB; Felsenfeld H
    Biochemistry; 1975 Jul; 14(14):3049-56. PubMed ID: 50085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence studies on the interactions of myelin basic protein in electrolyte solutions.
    Nowak MW; Berman HA
    Biochemistry; 1991 Jul; 30(30):7642-51. PubMed ID: 1713061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformations of P2 protein of peripheral nerve myelin by nuclear magnetic resonance spectroscopy.
    Chapman BE; James GE; Moore WJ
    J Neurochem; 1981 Jun; 36(6):2032-6. PubMed ID: 6165808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence spectroscopy of single tryptophan mutants of apolipophorin-III in discoidal lipoproteins of dimyristoylphosphatidylcholine.
    Soulages JL; Arrese EL
    Biochemistry; 2000 Aug; 39(34):10574-80. PubMed ID: 10956049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myelin basic protein ability to organize lipid bilayers: structural transition in bilayers of lysophosphatidylcholine micelles.
    Riccio P; Masotti L; Cavatorta P; De Santis A; Juretic D; Bobba A; Pasquali-Ronchetti I; Quagliariello E
    Biochem Biophys Res Commun; 1986 Jan; 134(1):313-9. PubMed ID: 2418825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic fluorescence of a hydrophobic myelin protein and some complexes with phospholipids.
    Cockle SA; Epand RM; Moscarello MA
    Biochemistry; 1978 Feb; 17(4):630-7. PubMed ID: 623735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorescence studies of the interaction of myelin basic protein with phosphatidylserine vesicles.
    Vadas EB; Melançon P; Braun PE; Galley WC
    Biochemistry; 1981 May; 20(11):3110-6. PubMed ID: 6166320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circular dichroic analysis of the secondary structure of myelin basic protein and derived peptides bound to detergents and to lipid vesicles.
    Keniry MA; Smith R
    Biochim Biophys Acta; 1979 Jun; 578(2):381-91. PubMed ID: 90525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of myelin basic protein with gangliosides and ganglioside-phospholipid mixtures.
    Bach D; Sela B
    Biochim Biophys Acta; 1985 Oct; 819(2):225-30. PubMed ID: 2412585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thermodynamically stable state of myelin basic protein in aqueous solution is a flexible coil.
    Gow A; Smith R
    Biochem J; 1989 Jan; 257(2):535-40. PubMed ID: 2467658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myelin basic protein binds heme at a specific site near the tryptophan residue.
    Morris SJ; Bradley D; Campagnoni AT; Stoner GL
    Biochemistry; 1987 Apr; 26(8):2175-82. PubMed ID: 2441743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic assessment of secondary and tertiary structure in myelin basic protein.
    Randall CS; Zand R
    Biochemistry; 1985 Apr; 24(8):1998-2004. PubMed ID: 2410023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equilibrium binding of myristoyllysophosphatidylcholine to bovine myelin basic protein: an example of ligand-mediated acceptor association.
    Gow A; Winzor DJ; Smith R
    Biochemistry; 1987 Feb; 26(4):982-7. PubMed ID: 2436660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophan fluorescence of terminal deoxynucleotidyl transferase: effects of quenchers on time-resolved emission spectra.
    Robbins DJ; Deibel MR; Barkley MD
    Biochemistry; 1985 Dec; 24(25):7250-7. PubMed ID: 4084579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes of neuromedin B and delta sleep-inducing peptide induced by their interaction with lipid membranes as revealed by spectroscopic techniques and molecular dynamics simulation.
    Polverini E; Casadio R; Neyroz P; Masotti L
    Arch Biochem Biophys; 1998 Jan; 349(2):225-35. PubMed ID: 9448709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins.
    Tayeh N; Rungassamy T; Albani JR
    J Pharm Biomed Anal; 2009 Sep; 50(2):107-16. PubMed ID: 19473803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphipathic alpha-helix bundle organization of lipid-free chicken apolipoprotein A-I.
    Kiss RS; Kay CM; Ryan RO
    Biochemistry; 1999 Apr; 38(14):4327-34. PubMed ID: 10194351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane proteins in reverse micelles: myelin basic protein in a membrane-mimetic environment.
    Nicot C; Vacher M; Vincent M; Gallay J; Waks M
    Biochemistry; 1985 Nov; 24(24):7024-32. PubMed ID: 2416347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.