BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 24658537)

  • 1. Nanopore fabrication by controlled dielectric breakdown.
    Kwok H; Briggs K; Tabard-Cossa V
    PLoS One; 2014; 9(3):e92880. PubMed ID: 24658537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution.
    Briggs K; Charron M; Kwok H; Le T; Chahal S; Bustamante J; Waugh M; Tabard-Cossa V
    Nanotechnology; 2015 Feb; 26(8):084004. PubMed ID: 25648336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis.
    Briggs K; Kwok H; Tabard-Cossa V
    Small; 2014 May; 10(10):2077-86. PubMed ID: 24585682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown.
    Bello J; Shim J
    Biomed Microdevices; 2018 Apr; 20(2):38. PubMed ID: 29680876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules.
    Yanagi I; Akahori R; Takeda KI
    Sci Rep; 2019 Sep; 9(1):13143. PubMed ID: 31511597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-state nanopore fabrication by automated controlled breakdown.
    Waugh M; Briggs K; Gunn D; Gibeault M; King S; Ingram Q; Jimenez AM; Berryman S; Lomovtsev D; Andrzejewski L; Tabard-Cossa V
    Nat Protoc; 2020 Jan; 15(1):122-143. PubMed ID: 31836867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.
    Uddin A; Yemenicioglu S; Chen CH; Corigliano E; Milaninia K; Theogarajan L
    Nanotechnology; 2013 Apr; 24(15):155501. PubMed ID: 23519330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductance-based profiling of nanopores: Accommodating fabrication irregularities.
    Bandara YMNDY; Nichols JW; Iroshika Karawdeniya B; Dwyer JR
    Electrophoresis; 2018 Feb; 39(4):626-634. PubMed ID: 29131359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple Fabrication of Solid-State Nanopores on a Carbon Film.
    Takai N; Shoji K; Maki T; Kawano R
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of DNA Through Solid-state Nanopores Fabricated by Controlled Dielectric Breakdown.
    Fujinami Tanimoto IM; Zhang J; Cressiot B; Le Pioufle B; Bacri L; Pelta J
    Chem Asian J; 2022 Dec; 17(24):e202200888. PubMed ID: 36321866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Electrical Conduction and Nanopore Formation During Controlled Breakdown.
    Fried JP; Swett JL; Nadappuram BP; Fedosyuk A; Sousa PM; Briggs DP; Ivanov AP; Edel JB; Mol JA; Yates JR
    Small; 2021 Sep; 17(37):e2102543. PubMed ID: 34337856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine-tuning the size and minimizing the noise of solid-state nanopores.
    Beamish E; Kwok H; Tabard-Cossa V; Godin M
    J Vis Exp; 2013 Oct; (80):e51081. PubMed ID: 24300128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection.
    Yanagi I; Akahori R; Hatano T; Takeda K
    Sci Rep; 2014 May; 4():5000. PubMed ID: 24847795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating Sub-3 nm Plasmonic Gaps into Solid-State Nanopores.
    Shi X; Verschueren D; Pud S; Dekker C
    Small; 2018 May; 14(18):e1703307. PubMed ID: 29251411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown.
    Tahvildari R; Beamish E; Tabard-Cossa V; Godin M
    Lab Chip; 2015 Mar; 15(6):1407-11. PubMed ID: 25631885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanopore Fabrication via Transient High Electric Field Controlled Breakdown and Detection of Single RNA Molecules.
    Yin B; Fang S; Zhou D; Liang L; Wang L; Wang Z; Wang D; Yuan J
    ACS Appl Bio Mater; 2020 Sep; 3(9):6368-6375. PubMed ID: 35021767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown.
    Ying C; Houghtaling J; Eggenberger OM; Guha A; Nirmalraj P; Awasthi S; Tian J; Mayer M
    ACS Nano; 2018 Nov; 12(11):11458-11470. PubMed ID: 30335956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction.
    Goto Y; Yanagi I; Matsui K; Yokoi T; Takeda K
    Sci Rep; 2016 Aug; 6():31324. PubMed ID: 27499264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.