These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24658632)

  • 1. Visual control of trunk translation and orientation during locomotion.
    Anson E; Agada P; Kiemel T; Ivanenko Y; Lacquaniti F; Jeka J
    Exp Brain Res; 2014 Jun; 232(6):1941-51. PubMed ID: 24658632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does visual feedback during walking result in similar improvements in trunk control for young and older healthy adults?
    Anson E; Rosenberg R; Agada P; Kiemel T; Jeka J
    J Neuroeng Rehabil; 2013 Nov; 10():110. PubMed ID: 24274143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The many roles of vision during walking.
    Logan D; Kiemel T; Dominici N; Cappellini G; Ivanenko Y; Lacquaniti F; Jeka JJ
    Exp Brain Res; 2010 Oct; 206(3):337-50. PubMed ID: 20852990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interplay between strategic and adaptive control mechanisms in plastic recalibration of locomotor function.
    Richards JT; Mulavara AP; Bloomberg JJ
    Exp Brain Res; 2007 Apr; 178(3):326-38. PubMed ID: 17061092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visuomotor error augmentation affects mediolateral head and trunk stabilization during walking.
    Qiao M; Richards JT; Franz JR
    Hum Mov Sci; 2019 Dec; 68():102525. PubMed ID: 31731210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of absent visual feedback control on gait variability during different locomotion speeds.
    Wuehr M; Schniepp R; Pradhan C; Ilmberger J; Strupp M; Brandt T; Jahn K
    Exp Brain Res; 2013 Jan; 224(2):287-94. PubMed ID: 23109084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direction-dependent control of balance during walking and standing.
    O'Connor SM; Kuo AD
    J Neurophysiol; 2009 Sep; 102(3):1411-9. PubMed ID: 19553493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expected and unexpected head yaw movements result in different modifications of gait and whole body coordination strategies.
    Vallis LA; Patla AE
    Exp Brain Res; 2004 Jul; 157(1):94-110. PubMed ID: 15146304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of aging on whole body and segmental control while obstacle crossing under impaired sensory conditions.
    Novak AC; Deshpande N
    Hum Mov Sci; 2014 Jun; 35():121-30. PubMed ID: 24746603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure to a rotating virtual environment during treadmill locomotion causes adaptation in heading direction.
    Mulavara AP; Richards JT; Ruttley T; Marshburn A; Nomura Y; Bloomberg JJ
    Exp Brain Res; 2005 Oct; 166(2):210-9. PubMed ID: 16034569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path.
    Vallis LA; McFadyen BJ
    Exp Brain Res; 2005 Nov; 167(1):119-27. PubMed ID: 16177831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization and mobility of the head and trunk in vervet monkeys (Cercopithecus aethiops) during treadmill walks and gallops.
    Dunbar DC
    J Exp Biol; 2004 Dec; 207(Pt 25):4427-38. PubMed ID: 15557028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function dictates the phase dependence of vision during human locomotion.
    Logan D; Ivanenko YP; Kiemel T; Cappellini G; Sylos-Labini F; Lacquaniti F; Jeka JJ
    J Neurophysiol; 2014 Jul; 112(1):165-80. PubMed ID: 24717345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Walking variability during continuous pseudo-random oscillations of the support surface and visual field.
    McAndrew PM; Dingwell JB; Wilken JM
    J Biomech; 2010 May; 43(8):1470-5. PubMed ID: 20346453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trunk muscle proprioceptive input assists steering of locomotion.
    Schmid M; De Nunzio AM; Schieppati M
    Neurosci Lett; 2005 Aug 12-19; 384(1-2):127-32. PubMed ID: 15885899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.
    Kannape OA; Barré A; Aminian K; Blanke O
    PLoS One; 2014; 9(1):e85560. PubMed ID: 24465601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Walking more slowly than with normal velocity: The influence on trunk and pelvis kinematics in young and older healthy persons.
    Swinnen E; Baeyens JP; Pintens S; Buyl R; Goossens M; Meeusen R; Kerckhofs E
    Clin Biomech (Bristol, Avon); 2013 Aug; 28(7):800-6. PubMed ID: 23856336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Invariance of locomotor trajectories across visual and gait direction conditions.
    Pham QC; Berthoz A; Hicheur H
    Exp Brain Res; 2011 Apr; 210(2):207-15. PubMed ID: 21437633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treadmill locomotion captures visual perception of apparent motion.
    Yabe Y; Taga G
    Exp Brain Res; 2008 Dec; 191(4):487-94. PubMed ID: 18716764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of the head and trunk during gaze reorientation during standing and treadmill walking.
    Cinelli M; Patla A; Stuart B
    Exp Brain Res; 2007 Jul; 181(1):183-91. PubMed ID: 17342475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.