These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24658632)

  • 21. Effects of optic flow speed and lateral flow asymmetry on locomotion in younger and older adults: a virtual reality study.
    Chou YH; Wagenaar RC; Saltzman E; Giphart JE; Young D; Davidsdottir R; Cronin-Golomb A
    J Gerontol B Psychol Sci Soc Sci; 2009 Mar; 64(2):222-31. PubMed ID: 19276239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of visual focus and gait speed on walking balance in the frontal plane.
    Goodworth A; Perrone K; Pillsbury M; Yargeau M
    Hum Mov Sci; 2015 Aug; 42():15-26. PubMed ID: 25918828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visual control of walking velocity.
    François M; Morice AH; Bootsma RJ; Montagne G
    Neurosci Res; 2011 Jun; 70(2):214-9. PubMed ID: 21345354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variability of lower extremity joint kinematics during backward walking in a virtual environment.
    Katsavelis D; Mukherjee M; Decker L; Stergiou N
    Nonlinear Dynamics Psychol Life Sci; 2010 Apr; 14(2):165-78. PubMed ID: 20346261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic stability of human walking in visually and mechanically destabilizing environments.
    McAndrew PM; Wilken JM; Dingwell JB
    J Biomech; 2011 Feb; 44(4):644-9. PubMed ID: 21094944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of walking velocity on vertical head and body movements during locomotion.
    Hirasaki E; Moore ST; Raphan T; Cohen B
    Exp Brain Res; 1999 Jul; 127(2):117-30. PubMed ID: 10442403
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of steering in the presence of unexpected head yaw movements. Influence on sequencing of subtasks.
    Vallis LA; Patla AE; Adkin AL
    Exp Brain Res; 2001 May; 138(1):128-34. PubMed ID: 11374079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion.
    Mulavara AP; Bloomberg JJ
    J Vestib Res; 2002-2003; 12(5-6):255-69. PubMed ID: 14501102
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of visual deprivation on intra-limb coordination during walking in children and adults.
    Hallemans A; Aerts P
    Exp Brain Res; 2009 Sep; 198(1):95-106. PubMed ID: 19618172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Partial Absence of Visual Feedback Information on Gait Symmetry.
    Kim SJ; Kayitesi MA; Chan A; Graham K
    Appl Psychophysiol Biofeedback; 2017 Jun; 42(2):107-115. PubMed ID: 28293760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control strategies for rapid, visually guided adjustments of the foot during continuous walking.
    Barton SL; Matthis JS; Fajen BR
    Exp Brain Res; 2019 Jul; 237(7):1673-1690. PubMed ID: 30976822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual feedforward control in human locomotion during avoidance of obstacles that change size.
    Santos LC; Moraes R; Patla AE
    Motor Control; 2010 Oct; 14(4):424-39. PubMed ID: 21051786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The utility of a virtual reality locomotion interface for studying gait behavior.
    Sheik-Nainar MA; Kaber DB
    Hum Factors; 2007 Aug; 49(4):696-709. PubMed ID: 17702221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visual guidance of landing behaviour when stepping down to a new level.
    Buckley JG; MacLellan MJ; Tucker MW; Scally AJ; Bennett SJ
    Exp Brain Res; 2008 Jan; 184(2):223-32. PubMed ID: 17726604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Directional effects of biofeedback on trunk sway during gait tasks in healthy young subjects.
    Janssen LJ; Verhoeff LL; Horlings CG; Allum JH
    Gait Posture; 2009 Jun; 29(4):575-81. PubMed ID: 19157877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of viewing distance on the generation of vertical eye movements during locomotion.
    Moore ST; Hirasaki E; Cohen B; Raphan T
    Exp Brain Res; 1999 Dec; 129(3):347-61. PubMed ID: 10591907
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Closed-loop control of trunk posture improves locomotion through the regulation of leg proprioceptive feedback after spinal cord injury.
    Moraud EM; von Zitzewitz J; Miehlbradt J; Wurth S; Formento E; DiGiovanna J; Capogrosso M; Courtine G; Micera S
    Sci Rep; 2018 Jan; 8(1):76. PubMed ID: 29311614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gait deviations induced by visual stimulation in roll.
    Schneider E; Jahn K; Dieterich M; Brandt T; Strupp M
    Exp Brain Res; 2008 Feb; 185(1):21-6. PubMed ID: 17909767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Locomotion-induced hippocampal theta is independent of visual information in rats during movement through a pipe.
    Chen CY; Yang CC; Lin YY; Kuo TB
    Behav Brain Res; 2011 Jan; 216(2):699-704. PubMed ID: 20888366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.