These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24658727)

  • 1. Ultrasonic manipulation of particles in an open fluid film.
    Jensen R; Gralinski I; Neild A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1964-70. PubMed ID: 24658727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of biologic particles by pumping effect in a pi-shaped ultrasonic actuator.
    Hu J; Yang J; Xu J; Du J
    Ultrasonics; 2006 Dec; 45(1-4):15-21. PubMed ID: 16837019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of acoustic radiation forces to position particles within fluid droplets.
    Oberti S; Neild A; Quach R; Dual J
    Ultrasonics; 2009 Jan; 49(1):47-52. PubMed ID: 18590923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode-switching: a new technique for electronically varying the agglomeration position in an acoustic particle manipulator.
    Glynne-Jones P; Boltryk RJ; Harris NR; Cranny AW; Hill M
    Ultrasonics; 2010 Jan; 50(1):68-75. PubMed ID: 19709711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic trapping of small particles by a vibrating rod.
    Liu Y; Hu J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):798-805. PubMed ID: 19406708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pi-shaped ultrasonic tweezers concept for manipulation of small particles.
    Hu J; Santoso AK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1499-507. PubMed ID: 15600095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation.
    Bernassau AL; Glynne-Jones P; Gesellchen F; Riehle M; Hill M; Cumming DR
    Ultrasonics; 2014 Jan; 54(1):268-74. PubMed ID: 23725599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element modeling of a microparticle manipulator.
    Neild A; Oberti S; Haake A; Dual J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e455-60. PubMed ID: 16797643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip.
    Wiklund M; Günther C; Lemor R; Jäger M; Fuhr G; Hertz HM
    Lab Chip; 2006 Dec; 6(12):1537-44. PubMed ID: 17203158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and dynamic evaluation for a linear ultrasonic stage using the thin-disc structure actuator.
    Wen F; Yen CY
    Ultrasonics; 2007 Dec; 47(1-4):23-31. PubMed ID: 17692880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optically transparent piezoelectric transducer for ultrasonic particle manipulation.
    Brodie GW; Qiu Y; Cochran S; Spalding GC; MacDonald MP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Mar; 61(3):389-91. PubMed ID: 24569243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterning of microspheres and microbubbles in an acoustic tweezers.
    Bernassau AL; Macpherson PG; Beeley J; Drinkwater BW; Cumming DR
    Biomed Microdevices; 2013 Apr; 15(2):289-97. PubMed ID: 23225102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic manipulation of yeast cells in suspension for absorption spectroscopy with an immersible mid-infrared fiberoptic probe.
    Koch C; Brandstetter M; Lendl B; Radel S
    Ultrasound Med Biol; 2013 Jun; 39(6):1094-101. PubMed ID: 23562020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous contact- and contamination-free ultrasonic emulsification-a useful tool for pharmaceutical development and production.
    Freitas S; Hielscher G; Merkle HP; Gander B
    Ultrason Sonochem; 2006 Jan; 13(1):76-85. PubMed ID: 16223691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow-assisted single-beam optothermal manipulation of microparticles.
    Liu Y; Poon AW
    Opt Express; 2010 Aug; 18(17):18483-91. PubMed ID: 20721243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile microfluidic channels for acoustophoresis on a budget.
    Samarasekera C; Yeow JT
    Biomed Microdevices; 2015 Oct; 17(5):99. PubMed ID: 26354878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One- and two-particle dynamics in microfluidic T-junctions.
    Ollila ST; Denniston C; Ala-Nissila T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):050302. PubMed ID: 23767470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AC electrothermal manipulation of conductive fluids and particles for lab-chip applications.
    Lian M; Islam N; Wu J
    IET Nanobiotechnol; 2007 Jun; 1(3):36-43. PubMed ID: 17506595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial confinement of ultrasonic force fields in microfluidic channels.
    Manneberg O; Melker Hagsäter S; Svennebring J; Hertz HM; Kutter JP; Bruus H; Wiklund M
    Ultrasonics; 2009 Jan; 49(1):112-9. PubMed ID: 18701122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plate-shaped non-contact ultrasonic transporter using flexural vibration.
    Ishii T; Mizuno Y; Koyama D; Nakamura K; Harada K; Uchida Y
    Ultrasonics; 2014 Feb; 54(2):455-60. PubMed ID: 23876434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.