These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24658731)

  • 1. A hybrid transducer to magnetically and ultrasonically evaluate magnetic fluids.
    Bruno AC; Pavan TZ; Baffa O; Carneiro AA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):2004-12. PubMed ID: 24658731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid system for magnetic and acoustic measurement.
    Bruno AC; Baffa O; Carneiro AO
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():761-4. PubMed ID: 19964487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid transducer to evaluate stomach emptying by ultrasound and susceptometric measurements: an in vivo feasibility study.
    Bruno AC; Sampaio DR; Pavan TZ; Baffa O; Carneiro AA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1288-94. PubMed ID: 26168175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A modified technique of displacement measurement of a piston made of magnetic material inside a cylinder.
    Bera SC; Marick S
    ISA Trans; 2013 Jul; 52(4):567-74. PubMed ID: 23669051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting rotating magnetic fields using optically pumped atomic magnetometers for measuring ultra-low-field magnetic resonance signals.
    Oida T; Ito Y; Kamada K; Kobayashi T
    J Magn Reson; 2012 Apr; 217():6-9. PubMed ID: 22417784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic field sensor using tilted fiber grating interacting with magnetic fluid.
    Zheng J; Dong X; Zu P; Shao LY; Chan CC; Cui Y; Shum PP
    Opt Express; 2013 Jul; 21(15):17863-8. PubMed ID: 23938659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing signal to noise ratio by fine-tuning tapers of cladded/uncladded buffer rods in ultrasonic time domain reflectometry in smelters.
    Viumdal H; Mylvaganam S
    Ultrasonics; 2014 Mar; 54(3):894-904. PubMed ID: 24268177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cylindrical traveling wave ultrasonic motor using a circumferential composite transducer.
    Liu Y; Liu J; Chen W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2397-404. PubMed ID: 22083773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.
    Sarvazyan A; Fillinger L
    Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magneto-optical tracking of flexible laparoscopic ultrasound: model-based online detection and correction of magnetic tracking errors.
    Feuerstein M; Reichl T; Vogel J; Traub J; Navab N
    IEEE Trans Med Imaging; 2009 Jun; 28(6):951-67. PubMed ID: 19211352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rotary ultrasonic motor using bending vibration transducers.
    Liu Y; Chen W; Liu J; Shi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Oct; 57(10):2360-4. PubMed ID: 20889424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibration characteristics of a corrugated cylindrical shell piezoelectric transducer.
    Xu L; Chen M; Du H; Hu H; Hu Y; Fan H; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2502-8. PubMed ID: 19049930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and experimental study of microcantilever ultrasonic detection transducers.
    Chen X; Stratoudaki T; Sharples SD; Clark M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2722-32. PubMed ID: 20040409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.
    Zeqiri B; Zauhar G; Hodnett M; Barrie J
    Ultrasonics; 2011 May; 51(4):420-4. PubMed ID: 21163509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular polypropylene polymer foam as air-coupled ultrasonic transducer materials.
    Satyanarayan L; Haberman MR; Berthelot YH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Oct; 57(10):2343-55. PubMed ID: 20889422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a miniaturized piezoelectric ultrasonic transducer.
    Li T; Chen Y; Ma J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):649-59. PubMed ID: 19411223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cylindrical standing wave ultrasonic motor using bending vibration transducer.
    Liu Y; Chen W; Liu J; Shi S
    Ultrasonics; 2011 Jul; 51(5):527-31. PubMed ID: 21215980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive ultrasonic vibrometer for very low frequency applications.
    Cretin B; Vairac P; Jachez N; Pergaud J
    Rev Sci Instrum; 2007 Aug; 78(8):085112. PubMed ID: 17764360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental study of underwater transmission characteristics of high-frequency 30 MHz polyurea ultrasonic transducer.
    Nakazawa M; Aoyagi T; Tabaru M; Nakamura K; Ueha S
    Ultrasonics; 2014 Feb; 54(2):526-36. PubMed ID: 24035608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magneto-harmonic pressure sensor for biomedical applications.
    Tan EL; Ong KG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5594-7. PubMed ID: 22255608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.