BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 24658827)

  • 21. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients.
    Elens L; Bouamar R; Hesselink DA; Haufroid V; van der Heiden IP; van Gelder T; van Schaik RH
    Clin Chem; 2011 Nov; 57(11):1574-83. PubMed ID: 21903774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. P450 oxidoreductase *28 (POR*28) and tacrolimus disposition in pediatric kidney transplant recipients--a pilot study.
    Gijsen VM; van Schaik RH; Soldin OP; Soldin SJ; Nulman I; Koren G; de Wildt SN
    Ther Drug Monit; 2014 Apr; 36(2):152-8. PubMed ID: 24089076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Which Genetic Determinants Should be Considered for Tacrolimus Dose Optimization in Kidney Transplantation? A Combined Analysis of Genes Affecting the CYP3A Locus.
    Bruckmueller H; Werk AN; Renders L; Feldkamp T; Tepel M; Borst C; Caliebe A; Kunzendorf U; Cascorbi I
    Ther Drug Monit; 2015 Jun; 37(3):288-95. PubMed ID: 25271728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients.
    de Jonge H; Metalidis C; Naesens M; Lambrechts D; Kuypers DR
    Pharmacogenomics; 2011 Sep; 12(9):1281-91. PubMed ID: 21770725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tacrolimus concentrations in relation to CYP3A and ABCB1 polymorphisms among solid organ transplant recipients in Korea.
    Jun KR; Lee W; Jang MS; Chun S; Song GW; Park KT; Lee SG; Han DJ; Kang C; Cho DY; Kim JQ; Min WK
    Transplantation; 2009 Apr; 87(8):1225-31. PubMed ID: 19384171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CYP3A5 polymorphisms and their effects on tacrolimus exposure in an ethnically diverse South African renal transplant population.
    Muller WK; Dandara C; Manning K; Mhandire D; Ensor J; Barday Z; Freercks R
    S Afr Med J; 2020 Jan; 110(2):159-166. PubMed ID: 32657689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-Nucleotide Polymorphism of CYP3A5 Impacts the Exposure to Tacrolimus in Pediatric Renal Transplant Recipients: A Pharmacogenetic Substudy of the TWIST Trial.
    Billing H; Höcker B; Fichtner A; van Damme-Lombaerts R; Friman S; Jaray J; Vondrak K; Sarvary E; Dello Strologo L; Oellerich M; von Ahsen N; Tönshoff B
    Ther Drug Monit; 2017 Feb; 39(1):21-28. PubMed ID: 28030534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Lack of Significant Effect of POR*28 Allelic Variant on Tacrolimus Exposure in Kidney Transplant Recipients.
    Jannot AS; Vuillemin X; Etienne I; Buchler M; Hurault de Ligny B; Choukroun G; Colosio C; Thierry A; Vigneau C; Moulin B; Rerolle JP; Heng AE; Subra JF; Legendre C; Beaune P; Loriot MA; Thervet E; Pallet N
    Ther Drug Monit; 2016 Apr; 38(2):223-9. PubMed ID: 26829596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative clinical trial of the variability factors of the exposure indices used for the drug monitoring of two tacrolimus formulations in kidney transplant recipients.
    Marquet P; Albano L; Woillard JB; Rostaing L; Kamar N; Sakarovitch C; Gatault P; Buchler M; Charpentier B; Thervet E; Cassuto E
    Pharmacol Res; 2018 Mar; 129():84-94. PubMed ID: 29229354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of ABCB1, CYP3A4*18B and CYP3A5*3 polymorphisms on cyclosporine A pharmacokinetics in bone marrow transplant recipients.
    Qiu F; He XJ; Sun YX; Li-Ling J; Zhao LM
    Pharmacol Rep; 2011; 63(3):815-25. PubMed ID: 21857093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Population pharmacokinetic analysis and dosing guidelines for tacrolimus co-administration with Wuzhi capsule in Chinese renal transplant recipients.
    Jing Y; Kong Y; Hou X; Liu H; Fu Q; Jiao Z; Peng H; Wei X
    J Clin Pharm Ther; 2021 Aug; 46(4):1117-1128. PubMed ID: 33768546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Association of MDR1, CYP3A4*18B, and CYP3A5*3 polymorphisms with cyclosporine pharmacokinetics in Chinese renal transplant recipients.
    Qiu XY; Jiao Z; Zhang M; Zhong LJ; Liang HQ; Ma CL; Zhang L; Zhong MK
    Eur J Clin Pharmacol; 2008 Nov; 64(11):1069-84. PubMed ID: 18636247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Association Between CYP3A4 and CYP3A5 Genotypes and Cyclosporine's Blood Levels and Doses among Jordanian Kidney Transplanted Patients.
    El-Shair S; Al Shhab M; Zayed K; Alsmady M; Zihlif M
    Curr Drug Metab; 2019; 20(8):682-694. PubMed ID: 31385766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Association of CYP3A4-392A/G, CYP3A5-6986A/G, and ABCB1-3435C/T Polymorphisms with Tacrolimus Dose, Serum Concentration, and Biochemical Parameters in Mexican Patients with Kidney Transplant.
    Alatorre-Moreno EV; Saldaña-Cruz AM; Pérez-Guerrero EE; Morán-Moguel MC; Contreras-Haro B; López-de La Mora DA; Dávalos-Rodríguez IP; Marín-Medina A; Rivera-Cameras A; Balderas-Peña LA; Gómez-Ramos JJ; Cortés-Sanabria L; Salazar-Páramo M
    Genes (Basel); 2024 Apr; 15(4):. PubMed ID: 38674430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The POR rs1057868-rs2868177 GC-GT diplotype is associated with high tacrolimus concentrations in early post-renal transplant recipients.
    Liu S; Chen RX; Li J; Zhang Y; Wang XD; Fu Q; Chen LY; Liu XM; Huang HB; Huang M; Wang CX; Li JL
    Acta Pharmacol Sin; 2016 Sep; 37(9):1251-8. PubMed ID: 27498776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus.
    Hesselink DA; van Schaik RH; van der Heiden IP; van der Werf M; Gregoor PJ; Lindemans J; Weimar W; van Gelder T
    Clin Pharmacol Ther; 2003 Sep; 74(3):245-54. PubMed ID: 12966368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients.
    Roy JN; Barama A; Poirier C; Vinet B; Roger M
    Pharmacogenet Genomics; 2006 Sep; 16(9):659-65. PubMed ID: 16906020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of CYP3A4*1B and CYP3A5*3 polymorphisms on the pharmacokinetics of cyclosporine and sirolimus in renal transplant recipients.
    Żochowska D; Wyzgał J; Pączek L
    Ann Transplant; 2012; 17(3):36-44. PubMed ID: 23018254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of CYP3A4*22, CYP3A5*3 and POR*28 genetic polymorphisms on calcineurin inhibitors dose requirements in early phase renal transplant patients.
    Ebid AI; Ismail DA; Lotfy NM; Mahmoud MA; El-Sharkawy M
    Pharmacogenet Genomics; 2024 Feb; 34(2):43-52. PubMed ID: 38050720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frequencies and roles of CYP3A5, CYP3A4 and ABCB1 single nucleotide polymorphisms in Italian teenagers after kidney transplantation.
    Turolo S; Tirelli AS; Ferraresso M; Ghio L; Belingheri M; Groppali E; Torresani E; Edefonti A
    Pharmacol Rep; 2010; 62(6):1159-69. PubMed ID: 21273673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.