BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2465913)

  • 1. Hemoglobin causes both endothelium-dependent and endothelium-independent contraction of the pig coronary arteries, independently of an inhibition of EDRF effects.
    Bény JL; Brunet PC; Van der Bent V
    Experientia; 1989 Feb; 45(2):132-4. PubMed ID: 2465913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of nitro-L-arginine on endothelium-dependent hyperpolarizations and relaxations of pig coronary arteries.
    Pacicca C; von der Weid PY; Beny JL
    J Physiol; 1992 Nov; 457():247-56. PubMed ID: 1284311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A vascular smooth muscles nitric oxide relaxation by a mechanism distinct of calcium changes.
    Chabaud F; Danna M; Bény JL
    Life Sci; 1994; 54(19):1449-58. PubMed ID: 7514709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further investigations into the endothelium-dependent hyperpolarizing effects of bradykinin and substance P in porcine coronary artery.
    Edwards G; Félétou M; Gardener MJ; Glen CD; Richards GR; Vanhoutte PM; Weston AH
    Br J Pharmacol; 2001 Aug; 133(7):1145-53. PubMed ID: 11487526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activated human polymorphonuclear leukocytes elicit endothelium-dependent contraction in isolated pig coronary arteries.
    Murohara T; Kugiyama K; Sugiyama S; Ohgushi M; Yasue H
    J Cardiovasc Pharmacol; 1993 May; 21(5):760-6. PubMed ID: 7685446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the endothelium in modulation of the acetylcholine vasoconstrictor response in porcine coronary microvessels.
    Myers PR; Banitt PF; Guerra R; Harrison DG
    Cardiovasc Res; 1991 Feb; 25(2):129-37. PubMed ID: 1742764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of basal and agonist-stimulated release of endothelium-derived relaxing factor from different arteries.
    Christie MI; Griffith TM; Lewis MJ
    Br J Pharmacol; 1989 Oct; 98(2):397-406. PubMed ID: 2479439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of endothelium-derived relaxing factor activity in the coronary and renal arteries of the pig.
    Christie MI; Lewis MJ
    Eur J Pharmacol; 1991 Sep; 202(2):143-9. PubMed ID: 1724965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substance P and bradykinin hyperpolarize pig coronary artery endothelial cells in primary culture.
    Brunet PC; Bény JL
    Blood Vessels; 1989; 26(4):228-34. PubMed ID: 2482785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological reactivity of human epicardial coronary arteries: characterization of relaxation responses to endothelium-derived relaxing factor.
    Stork AP; Cocks TM
    Br J Pharmacol; 1994 Dec; 113(4):1099-104. PubMed ID: 7889260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Converting-enzyme inhibitors potentiate bradykinin-induced relaxation in vitro.
    Félétou M; Germain M; Teisseire B
    Am J Physiol; 1992 Mar; 262(3 Pt 2):H839-45. PubMed ID: 1558194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cannabinoid CB1 receptor and endothelium-dependent hyperpolarization in guinea-pig carotid, rat mesenteric and porcine coronary arteries.
    Chataigneau T; Félétou M; Thollon C; Villeneuve N; Vilaine JP; Duhault J; Vanhoutte PM
    Br J Pharmacol; 1998 Mar; 123(5):968-74. PubMed ID: 9535027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High D-glucose-induced changes in endothelial Ca2+/EDRF signaling are due to generation of superoxide anions.
    Graier WF; Simecek S; Kukovetz WR; Kostner GM
    Diabetes; 1996 Oct; 45(10):1386-95. PubMed ID: 8826976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neither nitric oxide nor nitroglycerin accounts for all the characteristics of endothelially mediated vasodilatation of pig coronary arteries.
    Bény JL; Brunet PC
    Blood Vessels; 1988; 25(6):308-11. PubMed ID: 2462453
    [No Abstract]   [Full Text] [Related]  

  • 15. Electrotonic propagation of kinin-induced, endothelium-dependent hyperpolarizations in pig coronary smooth muscles.
    Pacicca C; Schaad O; Bény JL
    J Vasc Res; 1996; 33(5):380-5. PubMed ID: 8862143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelium-derived relaxing factor inhibits norepinephrine contraction of fetal guinea pig arteries.
    Thompson LP; Weiner CP
    Am J Physiol; 1993 Apr; 264(4 Pt 2):H1139-45. PubMed ID: 8476091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of endothelium-dependent relaxation in canine coronary collateral arteries.
    Rapps JA; Myers PR; Zhong Q; Parker JL
    Circulation; 1998 Oct; 98(16):1675-83. PubMed ID: 9778334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelium-dependent relaxant effect of thrombin on isolated pig coronary arteries.
    Glusa E
    Biomed Biochim Acta; 1988; 47(10-11):S67-70. PubMed ID: 3248118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Difference in endothelium-derived hyperpolarizing factor-mediated hyperpolarization and nitric oxide release between human internal mammary artery and saphenous vein.
    Liu ZG; Ge ZD; He GW
    Circulation; 2000 Nov; 102(19 Suppl 3):III296-301. PubMed ID: 11082404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of endothelium-derived relaxing factors released by bradykinin in human resistance arteries.
    Ohlmann P; Martínez MC; Schneider F; Stoclet JC; Andriantsitohaina R
    Br J Pharmacol; 1997 Jun; 121(4):657-64. PubMed ID: 9208131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.