These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24659485)

  • 21. The grass leaf developmental gradient as a platform for a systems understanding of the anatomical specialization of C(4) leaves.
    Nelson T
    J Exp Bot; 2011 May; 62(9):3039-48. PubMed ID: 21414963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The making of suberin.
    Serra O; Geldner N
    New Phytol; 2022 Aug; 235(3):848-866. PubMed ID: 35510799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical analysis and immunolocalisation of lignin and suberin in endodermal and hypodermal/rhizodermal cell walls of developing maize (Zea mays L.) primary roots.
    Zeier J; Ruel K; Ryser U; Schreiber L
    Planta; 1999 Jul; 209(1):1-12. PubMed ID: 10467026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Roles of the bundle sheath cells in leaves of C3 plants.
    Leegood RC
    J Exp Bot; 2008; 59(7):1663-73. PubMed ID: 18353763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The sugarcane ShMYB78 transcription factor activates suberin biosynthesis in Nicotiana benthamiana.
    Figueiredo R; Portilla Llerena JP; Kiyota E; Ferreira SS; Cardeli BR; de Souza SCR; Dos Santos Brito M; Sodek L; Cesarino I; Mazzafera P
    Plant Mol Biol; 2020 Nov; 104(4-5):411-427. PubMed ID: 32813231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix).
    Schreiber L; Franke R; Hartmann KD; Ranathunge K; Steudle E
    J Exp Bot; 2005 May; 56(415):1427-36. PubMed ID: 15809280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suberized transport barriers in Arabidopsis, barley and rice roots: From the model plant to crop species.
    Kreszies T; Schreiber L; Ranathunge K
    J Plant Physiol; 2018 Aug; 227():75-83. PubMed ID: 29449027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The endodermis, a tightly controlled barrier for nutrients.
    Doblas VG; Geldner N; Barberon M
    Curr Opin Plant Biol; 2017 Oct; 39():136-143. PubMed ID: 28750257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect and localization of phenanthrene in maize roots.
    Dupuy J; Leglize P; Vincent Q; Zelko I; Mustin C; Ouvrard S; Sterckeman T
    Chemosphere; 2016 Apr; 149():130-6. PubMed ID: 26855216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uncovering C4-like photosynthesis in C3 vascular cells.
    Gao Z; Shen W; Chen G
    J Exp Bot; 2018 Jun; 69(15):3531-3540. PubMed ID: 29684188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suberin deficiency and its effect on the transport physiology of young poplar roots.
    Grünhofer P; Heimerich I; Pohl S; Oertel M; Meng H; Zi L; Lucignano K; Bokhari SNH; Guo Y; Li R; Lin J; Fladung M; Kreszies T; Stöcker T; Schoof H; Schreiber L
    New Phytol; 2024 Apr; 242(1):137-153. PubMed ID: 38366280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Building and breaking of a barrier: Suberin plasticity and function in the endodermis.
    Shukla V; Barberon M
    Curr Opin Plant Biol; 2021 Dec; 64():102153. PubMed ID: 34861611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endodermal cell-cell contact is required for the spatial control of Casparian band development in Arabidopsis thaliana.
    Martinka M; Dolan L; Pernas M; Abe J; Lux A
    Ann Bot; 2012 Jul; 110(2):361-71. PubMed ID: 22645115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential expression pattern of C4 bundle sheath expression genes in rice, a C3 plant.
    Nomura M; Higuchi T; Ishida Y; Ohta S; Komari T; Imaizumi N; Miyao-Tokutomi M; Matsuoka M; Tajima S
    Plant Cell Physiol; 2005 May; 46(5):754-61. PubMed ID: 15753103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suberin lamellae in the hypodermis of maize (Zea mays) roots; development and factors affecting the permeability of hypodermal layers.
    Clarkson DT; Robards AW; Stephens JE; Stark M
    Plant Cell Environ; 1987 Jan; 10(1):83-93. PubMed ID: 28692152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell-type-specific differentiation of chloroplasts in C4 plants.
    Majeran W; van Wijk KJ
    Trends Plant Sci; 2009 Feb; 14(2):100-9. PubMed ID: 19162526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Apoplasmic barriers and oxygen transport properties of hypodermal cell walls in roots from four amazonian tree species.
    De Simone O; Haase K; Müller E; Junk WJ; Hartmann K; Schreiber L; Schmidt W
    Plant Physiol; 2003 May; 132(1):206-17. PubMed ID: 12746526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anatomical and chemical alterations but not photosynthetic dynamics and apoplastic transport changes are involved in the brittleness culm mutation of rice.
    Duan ZQ; Wang JM; Bai L; Zhao ZG; Chen KM
    J Integr Plant Biol; 2008 Dec; 50(12):1508-17. PubMed ID: 19093969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Combined Effect of Heat and Osmotic Stress on Suberization of
    Leal AR; Belo J; Beeckman T; Barros PM; Oliveira MM
    Cells; 2022 Jul; 11(15):. PubMed ID: 35954186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Building lipid barriers: biosynthesis of cutin and suberin.
    Pollard M; Beisson F; Li Y; Ohlrogge JB
    Trends Plant Sci; 2008 May; 13(5):236-46. PubMed ID: 18440267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.