These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 24659783)
21. Growth of Gouzy A; Healy C; Black KA; Rhee KY; Ehrt S Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34341117 [TBL] [Abstract][Full Text] [Related]
22. Functional studies of multiple thioredoxins from Mycobacterium tuberculosis. Akif M; Khare G; Tyagi AK; Mande SC; Sardesai AA J Bacteriol; 2008 Nov; 190(21):7087-95. PubMed ID: 18723612 [TBL] [Abstract][Full Text] [Related]
23. Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli. Meza E; Becker J; Bolivar F; Gosset G; Wittmann C Microb Cell Fact; 2012 Sep; 11():127. PubMed ID: 22973998 [TBL] [Abstract][Full Text] [Related]
24. Alteration of the biochemical valves in the central metabolism of Escherichia coli. Liao JC; Chao YP; Patnaik R Ann N Y Acad Sci; 1994 Nov; 745():21-34. PubMed ID: 7832509 [TBL] [Abstract][Full Text] [Related]
25. Development of a fed-batch fermentation process to overproduce phosphoenolpyruvate carboxykinase using an expression vector with promoter and plasmid copy number controllable by heat. Chao YP; Chern JT; Lin WS; Wang ZW Biotechnol Bioeng; 2003 Nov; 84(4):459-66. PubMed ID: 14574704 [TBL] [Abstract][Full Text] [Related]
26. Activating phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in combination for improvement of succinate production. Tan Z; Zhu X; Chen J; Li Q; Zhang X Appl Environ Microbiol; 2013 Aug; 79(16):4838-44. PubMed ID: 23747698 [TBL] [Abstract][Full Text] [Related]
27. PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase. Reyes AM; Vazquez DS; Zeida A; Hugo M; Piñeyro MD; De Armas MI; Estrin D; Radi R; Santos J; Trujillo M Free Radic Biol Med; 2016 Dec; 101():249-260. PubMed ID: 27751911 [TBL] [Abstract][Full Text] [Related]
28. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Marrero J; Rhee KY; Schnappinger D; Pethe K; Ehrt S Proc Natl Acad Sci U S A; 2010 May; 107(21):9819-24. PubMed ID: 20439709 [TBL] [Abstract][Full Text] [Related]
29. Mechanisms of activation of phosphoenolpyruvate carboxykinase from Escherichia coli by Ca2+ and of desensitization by trypsin. Sudom A; Walters R; Pastushok L; Goldie D; Prasad L; Delbaere LT; Goldie H J Bacteriol; 2003 Jul; 185(14):4233-42. PubMed ID: 12837799 [TBL] [Abstract][Full Text] [Related]
30. A physiology study of Escherichia coli overexpressing phosphoenolpyruvate carboxykinase. Kwon YD; Lee SY; Kim P Biosci Biotechnol Biochem; 2008 Apr; 72(4):1138-41. PubMed ID: 18391462 [TBL] [Abstract][Full Text] [Related]
31. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. Watanabe S; Zimmermann M; Goodwin MB; Sauer U; Barry CE; Boshoff HI PLoS Pathog; 2011 Oct; 7(10):e1002287. PubMed ID: 21998585 [TBL] [Abstract][Full Text] [Related]
32. An engineered Escherichia coli having a high intracellular level of ATP and enhanced recombinant protein production. Kim HJ; Kwon YD; Lee SY; Kim P Appl Microbiol Biotechnol; 2012 May; 94(4):1079-86. PubMed ID: 22173482 [TBL] [Abstract][Full Text] [Related]
33. How does an enzyme recognize CO2? Cotelesage JJ; Puttick J; Goldie H; Rajabi B; Novakovski B; Delbaere LT Int J Biochem Cell Biol; 2007; 39(6):1204-10. PubMed ID: 17475535 [TBL] [Abstract][Full Text] [Related]
34. Pck-ing up steam: Widening the salmonid gluconeogenic gene duplication trail. Marandel L; Kostyniuk DJ; Best C; Forbes JLI; Liu J; Panserat S; Mennigen JA Gene; 2019 May; 698():129-140. PubMed ID: 30849535 [TBL] [Abstract][Full Text] [Related]
36. Phosphoenolpyruvate carboxykinase as the sole anaplerotic enzyme in Saccharomyces cerevisiae. Zelle RM; Trueheart J; Harrison JC; Pronk JT; van Maris AJ Appl Environ Microbiol; 2010 Aug; 76(16):5383-9. PubMed ID: 20581175 [TBL] [Abstract][Full Text] [Related]
37. Hypoxia increases the rate of renal gluconeogenesis via hypoxia-inducible factor-1-dependent activation of phosphoenolpyruvate carboxykinase expression. Owczarek A; Gieczewska K; Jarzyna R; Jagielski AK; Kiersztan A; Gruza A; Winiarska K Biochimie; 2020; 171-172():31-37. PubMed ID: 32045650 [TBL] [Abstract][Full Text] [Related]
38. GntR-type transcriptional regulator PckR negatively regulates the expression of phosphoenolpyruvate carboxykinase in Corynebacterium glutamicum. Hyeon JE; Kang DH; Kim YI; You SK; Han SO J Bacteriol; 2012 May; 194(9):2181-8. PubMed ID: 22366416 [TBL] [Abstract][Full Text] [Related]
39. Cabezas-Cruz A; Espinosa PJ; Obregón DA; Alberdi P; de la Fuente J Front Cell Infect Microbiol; 2017; 7():375. PubMed ID: 28861402 [TBL] [Abstract][Full Text] [Related]
40. Identification of the Thioredoxin Partner of Vitamin K Epoxide Reductase in Mycobacterial Disulfide Bond Formation. Ke N; Landeta C; Wang X; Boyd D; Eser M; Beckwith J J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29784887 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]