BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24659990)

  • 21. Floral Induction and Flower Development of Orchids.
    Wang SL; Viswanath KK; Tong CG; An HR; Jang S; Chen FC
    Front Plant Sci; 2019; 10():1258. PubMed ID: 31649713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and characterization of the MADS-box genes highly expressed in the laticifer cells of Hevea brasiliensis.
    Wang Y; Zhan DF; Li HL; Guo D; Zhu JH; Peng SQ
    Sci Rep; 2019 Sep; 9(1):12673. PubMed ID: 31481699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and expression profiling of selected MADS-box family genes in Dendrobium officinale.
    Chen Y; Shen Q; Lyu P; Lin R; Sun C
    Genetica; 2019 Aug; 147(3-4):303-313. PubMed ID: 31292836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome wide analysis of MADS-box gene family in Brassica oleracea reveals conservation and variation in flower development.
    Sheng XG; Zhao ZQ; Wang JS; Yu HF; Shen YS; Zeng XY; Gu HH
    BMC Plant Biol; 2019 Mar; 19(1):106. PubMed ID: 30890145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The MADS-box genes expressed in the inflorescence of Orchis italica (Orchidaceae).
    Valoroso MC; Censullo MC; Aceto S
    PLoS One; 2019; 14(3):e0213185. PubMed ID: 30822337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptome-Wide Identification and Expression Analysis of DIVARICATA- and RADIALIS-Like Genes of the Mediterranean Orchid Orchis italica.
    Valoroso MC; De Paolo S; Iazzetti G; Aceto S
    Genome Biol Evol; 2017 Jun; 9(6):. PubMed ID: 28541415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytoplasma-conserved phyllogen proteins induce phyllody across the Plantae by degrading floral MADS domain proteins.
    Kitazawa Y; Iwabuchi N; Himeno M; Sasano M; Koinuma H; Nijo T; Tomomitsu T; Yoshida T; Okano Y; Yoshikawa N; Maejima K; Oshima K; Namba S
    J Exp Bot; 2017 May; 68(11):2799-2811. PubMed ID: 28505304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-Wide Identification of the MIKC-Type MADS-Box Gene Family in
    Ren Z; Yu D; Yang Z; Li C; Qanmber G; Li Y; Li J; Liu Z; Lu L; Wang L; Zhang H; Chen Q; Li F; Yang Z
    Front Plant Sci; 2017; 8():384. PubMed ID: 28382045
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring the evolutionary origin of floral organs of Erycina pusilla, an emerging orchid model system.
    Dirks-Mulder A; Butôt R; van Schaik P; Wijnands JW; van den Berg R; Krol L; Doebar S; van Kooperen K; de Boer H; Kramer EM; Smets EF; Vos RA; Vrijdaghs A; Gravendeel B
    BMC Evol Biol; 2017 Mar; 17(1):89. PubMed ID: 28335712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SEP-class genes in Prunus mume and their likely role in floral organ development.
    Zhou Y; Xu Z; Yong X; Ahmad S; Yang W; Cheng T; Wang J; Zhang Q
    BMC Plant Biol; 2017 Jan; 17(1):10. PubMed ID: 28086797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional Divergence of APETALA1 and FRUITFULL is due to Changes in both Regulation and Coding Sequence.
    McCarthy EW; Mohamed A; Litt A
    Front Plant Sci; 2015; 6():1076. PubMed ID: 26697035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. De novo transcriptome assembly from inflorescence of Orchis italica: analysis of coding and non-coding transcripts.
    De Paolo S; Salvemini M; Gaudio L; Aceto S
    PLoS One; 2014; 9(7):e102155. PubMed ID: 25025767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extending the Toolkit for Beauty: Differential Co-Expression of
    Lucibelli F; Valoroso MC; Theißen G; Nolden S; Mondragon-Palomino M; Aceto S
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34209912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A de novo floral transcriptome reveals clues into Phalaenopsis orchid flower development.
    Huang JZ; Lin CP; Cheng TC; Chang BC; Cheng SY; Chen YW; Lee CY; Chin SW; Chen FC
    PLoS One; 2015; 10(5):e0123474. PubMed ID: 25970572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots.
    Rudall PJ; Bateman RM
    Biol Rev Camb Philos Soc; 2002 Aug; 77(3):403-41. PubMed ID: 12227521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes.
    Mondragón-Palomino M; Theissen G
    Ann Bot; 2009 Aug; 104(3):583-94. PubMed ID: 19141602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of paralogous SEP-, FUL-, AG- and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers.
    Acri-Nunes-Miranda R; Mondragón-Palomino M
    Front Plant Sci; 2014; 5():76. PubMed ID: 24659990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the 'orchid code'.
    Mondragón-Palomino M; Theissen G
    Plant J; 2011 Jun; 66(6):1008-19. PubMed ID: 21435045
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.