These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 24660679)

  • 1. Indole alkaloids and semisynthetic indole derivatives as multifunctional scaffolds aiming the inhibition of enzymes related to neurodegenerative diseases--a focus on Psychotria L. Genus.
    Klein LC; Passos CS; Moraes AP; Wakui VG; Konrath EL; Nurisso A; Carrupt PA; de Oliveira CM; Kato L; Henriques AT
    Curr Top Med Chem; 2014; 14(8):1056-75. PubMed ID: 24660679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indole alkaloids of Psychotria as multifunctional cholinesterases and monoamine oxidases inhibitors.
    Passos CS; Simões-Pires CA; Nurisso A; Soldi TC; Kato L; de Oliveira CM; de Faria EO; Marcourt L; Gottfried C; Carrupt PA; Henriques AT
    Phytochemistry; 2013 Feb; 86():8-20. PubMed ID: 23261030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive Azepine-Indole Alkaloids from
    Klein-Júnior LC; Cretton S; Vander Heyden Y; Gasper AL; Nejad-Ebrahimi S; Christen P; Henriques AT
    J Nat Prod; 2020 Apr; 83(4):852-863. PubMed ID: 32150413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional Monoamine Oxidases and Cholinesterases Inhibitory Effects, as well as UPLC-DAD-MS Chemical Profile of Alkaloid Fractions Obtained from Species of the Palicoureeae Tribe.
    Klein-Junior LC; Passos CDS; Salton J; de Bitencourt FG; Funez L; de Andrade JP; Villalobos JP; de Loreto Bordignon SA; Gasper AL; Heyden YV; Henriques T
    Nat Prod Commun; 2016 Sep; 11(9):1271-1274. PubMed ID: 30807019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of chemometrics to study multifunctional indole alkaloids from Psychotria nemorosa (Palicourea comb. nov.). Part II: Indication of peaks related to the inhibition of butyrylcholinesterase and monoamine oxidase-A.
    Klein-Júnior LC; Viaene J; Tuenter E; Salton J; Gasper AL; Apers S; Andries JP; Pieters L; Henriques AT; Vander Heyden Y
    J Chromatogr A; 2016 Sep; 1463():71-80. PubMed ID: 27511709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, synthesis, pharmacological evaluation, QSAR analysis, molecular modeling and ADMET of novel donepezil-indolyl hybrids as multipotent cholinesterase/monoamine oxidase inhibitors for the potential treatment of Alzheimer's disease.
    Bautista-Aguilera OM; Esteban G; Bolea I; Nikolic K; Agbaba D; Moraleda I; Iriepa I; Samadi A; Soriano E; Unzeta M; Marco-Contelles J
    Eur J Med Chem; 2014 Mar; 75():82-95. PubMed ID: 24530494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of monoamine oxidase by indole and benzofuran derivatives.
    Prins LH; Petzer JP; Malan SF
    Eur J Med Chem; 2010 Oct; 45(10):4458-66. PubMed ID: 20674099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and discovery of anthranilamide derivatives as a potential treatment for neurodegenerative disorders via targeting cholinesterases and monoamine oxidases.
    Zaib S; Khan I; Ali HS; Younas MT; Ibrar A; Al-Odayni AB; Al-Kahtani AA
    Int J Biol Macromol; 2024 Jun; 272(Pt 1):132748. PubMed ID: 38821306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation of the monoamine oxidase inhibition properties of pyrrolo[3,4-f]indole-5,7-dione and indole-5,6-dicarbonitrile derivatives.
    Chirkova ZV; Kabanova MV; Filimonov SI; Abramov IG; Petzer A; Engelbrecht I; Petzer JP; Yu Suponitsky K; Veselovsky AV
    Drug Dev Res; 2018 Mar; 79(2):81-93. PubMed ID: 29570223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, synthesis, and pharmacological evaluation of 2-amino-5-nitrothiazole derived semicarbazones as dual inhibitors of monoamine oxidase and cholinesterase: effect of the size of aryl binding site.
    Tripathi RKP; M Sasi V; Gupta SK; Krishnamurthy S; Ayyannan SR
    J Enzyme Inhib Med Chem; 2018 Dec; 33(1):37-57. PubMed ID: 29098902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, biological evaluation, and molecular modeling of donepezil and N-[(5-(benzyloxy)-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine hybrids as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer's disease.
    Bolea I; Juárez-Jiménez J; de Los Ríos C; Chioua M; Pouplana R; Luque FJ; Unzeta M; Marco-Contelles J; Samadi A
    J Med Chem; 2011 Dec; 54(24):8251-70. PubMed ID: 22023459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multipotent MAO and cholinesterase inhibitors for the treatment of Alzheimer's disease: synthesis, pharmacological analysis and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amine.
    Samadi A; de los Ríos C; Bolea I; Chioua M; Iriepa I; Moraleda I; Bartolini M; Andrisano V; Gálvez E; Valderas C; Unzeta M; Marco-Contelles J
    Eur J Med Chem; 2012 Jun; 52():251-62. PubMed ID: 22503231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoamine oxidase inhibition by monoterpene indole alkaloids and fractions obtained from Psychotria suterella and Psychotria laciniata.
    Dos Santos Passos C; Soldi TC; Torres Abib R; Anders Apel M; Simões-Pires C; Marcourt L; Gottfried C; Henriques AT
    J Enzyme Inhib Med Chem; 2013 Jun; 28(3):611-8. PubMed ID: 22424181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel propargylamine-based inhibitors of cholinesterases and monoamine oxidases: Synthesis, biological evaluation and docking study.
    Krátký M; Vu QA; Štěpánková Š; Maruca A; Silva TB; Ambrož M; Pflégr V; Rocca R; Svrčková K; Alcaro S; Borges F; Vinšová J
    Bioorg Chem; 2021 Nov; 116():105301. PubMed ID: 34492558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and Computational Evaluation of Piperonylic Acid Derived Hydrazones Bearing Isatin Moieties as Dual Inhibitors of Cholinesterases and Monoamine Oxidases.
    Vishnu MS; Pavankumar V; Kumar S; Raja AS
    ChemMedChem; 2019 Jul; 14(14):1359-1376. PubMed ID: 31177620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of pyrrolo[3,4-f]indole-5,7-dione and indole-5,6-dicarbonitrile derivatives as inhibitors of monoamine oxidase.
    Chirkova ZV; Kabanova MV; Filimonov SI; Abramov IG; Petzer A; Hitge R; Petzer JP; Suponitsky KY
    Drug Dev Res; 2019 Nov; 80(7):970-980. PubMed ID: 31348537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical and Biological Evaluation of Novel 1
    Kulikova LN; Purgatorio R; Beloglazkin AA; Tafeenko VA; Reza RG; Levickaya DD; Sblano S; Boccarelli A; de Candia M; Catto M; Voskressensky LG; Altomare CD
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, synthesis and evaluation of 2-(indolylmethylidene)-2,3-dihydro-1-benzofuran-3-one and 2-(indolyl)-4H-chromen-4-one derivatives as novel monoamine oxidases inhibitors.
    Takao K; U S; Kamauchi H; Sugita Y
    Bioorg Chem; 2019 Jun; 87():594-600. PubMed ID: 30933784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, structure-activity relationships and molecular modeling studies of new indole inhibitors of monoamine oxidases A and B.
    La Regina G; Silvestri R; Gatti V; Lavecchia A; Novellino E; Befani O; Turini P; Agostinelli E
    Bioorg Med Chem; 2008 Nov; 16(22):9729-40. PubMed ID: 18951803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulatory Effects of Alkaloid Extract from Gongronema latifolium (Utazi) and Lasianthera africana (Editan) on Activities of Enzymes Relevant to Neurodegeneration.
    Nwanna EE; Adebayo AA; Oboh G; Ogunsuyi OB; Ademosun AO
    J Diet Suppl; 2019; 16(1):27-39. PubMed ID: 29451813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.