BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 24660754)

  • 1. Polypyrrole-coated chainlike gold nanoparticle architectures with the 808 nm photothermal transduction efficiency up to 70%.
    Lin M; Guo C; Li J; Zhou D; Liu K; Zhang X; Xu T; Zhang H; Wang L; Yang B
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5860-8. PubMed ID: 24660754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coating urchinlike gold nanoparticles with polypyrrole thin shells to produce photothermal agents with high stability and photothermal transduction efficiency.
    Li J; Han J; Xu T; Guo C; Bu X; Zhang H; Wang L; Sun H; Yang B
    Langmuir; 2013 Jun; 29(23):7102-10. PubMed ID: 23692027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced photothermal therapy of biomimetic polypyrrole nanoparticles through improving blood flow perfusion.
    Wang X; Li H; Liu X; Tian Y; Guo H; Jiang T; Luo Z; Jin K; Kuai X; Liu Y; Pang Z; Yang W; Shen S
    Biomaterials; 2017 Oct; 143():130-141. PubMed ID: 28800434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy.
    Chen M; Fang X; Tang S; Zheng N
    Chem Commun (Camb); 2012 Sep; 48(71):8934-6. PubMed ID: 22847451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer.
    Jin Y; Li Y; Ma X; Zha Z; Shi L; Tian J; Dai Z
    Biomaterials; 2014 Jul; 35(22):5795-804. PubMed ID: 24746966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polypyrrole-coated phase-change liquid perfluorocarbon nanoparticles for the visualized photothermal-chemotherapy of breast cancer.
    Yang Q; Li P; Ran H; Wan J; Chen H; Chen H; Wang Z; Zhang L
    Acta Biomater; 2019 May; 90():337-349. PubMed ID: 30936037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of stable chainlike Au nanostructures via silica coating and exploration for potential photothermal therapy.
    Yin Z; Zhang W; Fu Q; Yue H; Wei W; Tang P; Li W; Li W; Lin L; Ma G; Ma D
    Small; 2014 Sep; 10(18):3619-24. PubMed ID: 24861373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composite photothermal platform of polypyrrole-enveloped Fe₃O₄ nanoparticle self-assembled superstructures.
    Zhang X; Xu X; Li T; Lin M; Lin X; Zhang H; Sun H; Yang B
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14552-61. PubMed ID: 25134068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional polypyrrole@Fe(3)O(4) nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy.
    Tian Q; Wang Q; Yao KX; Teng B; Zhang J; Yang S; Han Y
    Small; 2014 Mar; 10(6):1063-8. PubMed ID: 24285365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Au/polypyrrole@Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: an in vitro study.
    Feng W; Zhou X; Nie W; Chen L; Qiu K; Zhang Y; He C
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4354-67. PubMed ID: 25664659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-assisted ultrafast fabrication of high-performance polypyrrole nanoparticles for photothermal therapy of tumors in vivo.
    Zhang C; Pan H; Wang X; Sun SK
    Biomater Sci; 2018 Sep; 6(10):2750-2756. PubMed ID: 30187038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled Au-Polymer Nanostructures for Multiphoton Imaging, Prodrug Delivery, and Chemo-Photothermal Therapy Platforms.
    Huang CC; Liu TM
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25259-69. PubMed ID: 26501876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation.
    Rahimi-Moghaddam F; Azarpira N; Sattarahmady N
    Lasers Med Sci; 2018 Nov; 33(8):1769-1779. PubMed ID: 29790012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Golden single-walled carbon nanotubes prepared using double layer polysaccharides bridge for photothermal therapy.
    Meng L; Xia W; Liu L; Niu L; Lu Q
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4989-96. PubMed ID: 24606763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polypyrrole Composite Nanoparticles with Morphology-Dependent Photothermal Effect and Immunological Responses.
    Tian Y; Zhang J; Tang S; Zhou L; Yang W
    Small; 2016 Feb; 12(6):721-6. PubMed ID: 26701670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosensitizer-Conjugated Albumin-Polypyrrole Nanoparticles for Imaging-Guided In Vivo Photodynamic/Photothermal Therapy.
    Song X; Liang C; Gong H; Chen Q; Wang C; Liu Z
    Small; 2015 Aug; 11(32):3932-41. PubMed ID: 25925790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polydopamine-coated Au-Ag nanoparticle-guided photothermal colorectal cancer therapy through multiple cell death pathways.
    Hao M; Kong C; Jiang C; Hou R; Zhao X; Li J; Wang Y; Gao Y; Zhang H; Yang B; Jiang J
    Acta Biomater; 2019 Jan; 83():414-424. PubMed ID: 30366131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile assembling of novel polypyrrole nanocomposites theranostic agent for magnetic resonance and computed tomography imaging guided efficient photothermal ablation of tumors.
    Yan D; Liu X; Deng G; Yuan H; Wang Q; Zhang L; Lu J
    J Colloid Interface Sci; 2018 Nov; 530():547-555. PubMed ID: 30005231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sacrificial template-based synthetic approach of polypyrrole hollow fibers for photothermal therapy.
    Bhattarai DP; Tiwari AP; Maharjan B; Tumurbaatar B; Park CH; Kim CS
    J Colloid Interface Sci; 2019 Jan; 534():447-458. PubMed ID: 30248614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of Raman tag-bridged core-shell Au@Cu
    He J; Dong J; Hu Y; Li G; Hu Y
    Nanoscale; 2019 Mar; 11(13):6089-6100. PubMed ID: 30869726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.