These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24660836)

  • 21. Monte Carlo simulation and theoretical calculation of SEM image intensity and its application in thickness measurement.
    Tian J; Wu J; Chiu YL
    Ultramicroscopy; 2018 Apr; 187():13-19. PubMed ID: 29413407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron-beam broadening in amorphous carbon films in low-energy scanning transmission electron microscopy.
    Drees H; Müller E; Dries M; Gerthsen D
    Ultramicroscopy; 2018 Feb; 185():65-71. PubMed ID: 29195139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamical electron backscatter diffraction patterns. Part I: pattern simulations.
    Callahan PG; De Graef M
    Microsc Microanal; 2013 Oct; 19(5):1255-65. PubMed ID: 23800378
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kikuchi pattern simulations of backscattered and transmitted electrons.
    Winkelmann A; Nolze G; Cios G; Tokarski T; Bała P; Hourahine B; Trager-Cowan C
    J Microsc; 2021 Nov; 284(2):157-184. PubMed ID: 34275156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction.
    Proust G; Trimby P; Piazolo S; Retraint D
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28447998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of Kikuchi band contrast reversal in electron backscatter diffraction patterns of silicon.
    Winkelmann A; Nolze G
    Ultramicroscopy; 2010 Feb; 110(3):190-4. PubMed ID: 20005045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of localized recoil in the formation of Kikuchi patterns.
    Winkelmann A; Vos M
    Ultramicroscopy; 2013 Feb; 125():66-71. PubMed ID: 23291360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Depth Resolution Dependence on Sample Thickness and Incident Energy in On-Axis Transmission Kikuchi Diffraction in Scanning Electron Microscope (SEM).
    Brodu E; Bouzy E
    Microsc Microanal; 2017 Dec; 23(6):1096-1106. PubMed ID: 29282164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing the thermal decomposition behaviors of ultrathin HfO2 films by an in situ high temperature scanning tunneling microscope.
    Xue K; Wang L; An J; Xu J
    Nanotechnology; 2011 May; 22(19):195705. PubMed ID: 21430314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-exposure diffraction pattern fusion applied to enable wider-angle transmission Kikuchi diffraction with direct electron detectors.
    Zhang T; Britton TB
    Ultramicroscopy; 2024 Mar; 257():113902. PubMed ID: 38086289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orientation mapping with Kikuchi patterns generated from a focused STEM probe and indexing with commercially available EDAX software.
    Burton GL; Wright S; Stokes A; Diercks DR; Clarke A; Gorman BP
    Ultramicroscopy; 2020 Feb; 209():112882. PubMed ID: 31765818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sample thickness determination by scanning transmission electron microscopy at low electron energies.
    Volkenandt T; Müller E; Gerthsen D
    Microsc Microanal; 2014 Feb; 20(1):111-23. PubMed ID: 24331292
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring Spatial Resolution in Electron Back-Scattered Diffraction Experiments via Monte Carlo Simulation.
    Ren SX; Kenik EA; Alexander KB; Goyal A
    Microsc Microanal; 1998 Jan; 4(1):15-22. PubMed ID: 9524142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction.
    Babinsky K; De Kloe R; Clemens H; Primig S
    Ultramicroscopy; 2014 Sep; 144():9-18. PubMed ID: 24815026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-energy electron scattering in carbon-based materials analyzed by scanning transmission electron microscopy and its application to sample thickness determination.
    Pfaff M; Müller E; Klein MF; Colsmann A; Lemmer U; Krzyzanek V; Reichelt R; Gerthsen D
    J Microsc; 2011 Jul; 243(1):31-9. PubMed ID: 21155995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of accelerating voltage and specimen thickness on the spatial resolution of transmission electron backscatter diffraction in Cu.
    Shih JW; Kuo KW; Kuo JC; Kuo TY
    Ultramicroscopy; 2017 Jun; 177():43-52. PubMed ID: 28284057
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic crystallographic characterization in a transmission electron microscope: applications to twinning induced plasticity steels and Al thin films.
    Galceran M; Albou A; Renard K; Coulombier M; Jacques PJ; Godet S
    Microsc Microanal; 2013 Jun; 19(3):693-7. PubMed ID: 23642730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Image blurring of thick specimens due to MeV transmission electron scattering: a Monte Carlo study.
    Wang F; Zhang HB; Cao M; Nishi R; Takaoka A
    J Electron Microsc (Tokyo); 2011; 60(5):315-20. PubMed ID: 21771806
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative measurements of Kikuchi bands in diffraction patterns of backscattered electrons using an electrostatic analyzer.
    Went MR; Winkelmann A; Vos M
    Ultramicroscopy; 2009 Sep; 109(10):1211-6. PubMed ID: 19500910
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An inexpensive approach for bright-field and dark-field imaging by scanning transmission electron microscopy in scanning electron microscopy.
    Patel B; Watanabe M
    Microsc Microanal; 2014 Feb; 20(1):124-32. PubMed ID: 24423133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.