These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24660979)

  • 21. Elemental bio-imaging of thorium, uranium, and plutonium in tissues from occupationally exposed former nuclear workers.
    Hare D; Tolmachev S; James A; Bishop D; Austin C; Fryer F; Doble P
    Anal Chem; 2010 Apr; 82(8):3176-82. PubMed ID: 20218581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gas-phase uranyl, neptunyl, and plutonyl: hydration and oxidation studied by experiment and theory.
    Rios D; Michelini MC; Lucena AF; Marçalo J; Bray TH; Gibson JK
    Inorg Chem; 2012 Jun; 51(12):6603-14. PubMed ID: 22656318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation and Fragmentation Chemistry of Tripositive Ln(TMGA)
    Chen X; Li Q; Gong Y
    J Am Soc Mass Spectrom; 2017 Aug; 28(8):1696-1701. PubMed ID: 28466431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quest for environmentally benign ligands for actinide separations: thermodynamic, spectroscopic, and structural characterization of U(VI) complexes with Oxa-diamide and related ligands.
    Tian G; Rao L; Teat SJ; Liu G
    Chemistry; 2009; 15(16):4172-81. PubMed ID: 19229938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polyethyleneimine methylphosphonate: towards the design of a new class of macromolecular actinide chelating agents in the case of human exposition.
    Lahrouch F; Sofronov O; Creff G; Rossberg A; Hennig C; Den Auwer C; Di Giorgio C
    Dalton Trans; 2017 Oct; 46(40):13869-13877. PubMed ID: 28971198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of anions and reaction conditions in the preparation of uranium(VI), neptunium(VI), and plutonium(VI) borates.
    Wang S; Villa EM; Diwu J; Alekseev EV; Depmeier W; Albrecht-Schmitt TE
    Inorg Chem; 2011 Mar; 50(6):2527-33. PubMed ID: 21291194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complexation of Hexavalent Neptunium(VI) with Oxydiacetic Acid and Its Amide Derivatives in Aqueous Solution: Spectrophotometry and DFT Calculations.
    Xu L; Zhao XK; Cao H; Hu HS; Li J; Chen J; Xu C
    Inorg Chem; 2024 Apr; 63(14):6173-6183. PubMed ID: 38530927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study of the gas-phase decomposition of multiply lithiated polycaprolactone, polytetrahydrofurane and their copolymer by two different activation methods: Collision-induced dissociation and electron transfer dissociation.
    Prian K; Aloui I; Legros V; Buchmann W
    Anal Chim Acta; 2019 Feb; 1048():85-95. PubMed ID: 30598161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review of electron-capture and electron-transfer dissociation tandem mass spectrometry in polymer chemistry.
    Hart-Smith G
    Anal Chim Acta; 2014 Jan; 808():44-55. PubMed ID: 24370092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heptavalent Neptunium in a Gas-Phase Complex: (Np
    Dau PD; Maurice R; Renault E; Gibson JK
    Inorg Chem; 2016 Oct; 55(19):9830-9837. PubMed ID: 27631457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A DFT study of the reactivity of actinidocenes (U, Np and Pu) with pyridine and pyridine N-oxide derivatives.
    Castro L; Yahia A; Maron L
    Dalton Trans; 2010 Aug; 39(29):6682-92. PubMed ID: 20520886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel malonamide grafted polystyrene-divinyl benzene resin for extraction, pre-concentration and separation of actinides.
    Ansari SA; Mohapatra PK; Manchanda VK
    J Hazard Mater; 2009 Jan; 161(2-3):1323-9. PubMed ID: 18541366
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subtle Interactions and Electron Transfer between U(III) , Np(III) , or Pu(III) and Uranyl Mediated by the Oxo Group.
    Arnold PL; Dutkiewicz MS; Zegke M; Walter O; Apostolidis C; Hollis E; Pécharman AF; Magnani N; Griveau JC; Colineau E; Caciuffo R; Zhang X; Schreckenbach G; Love JB
    Angew Chem Int Ed Engl; 2016 Oct; 55(41):12797-801. PubMed ID: 27628291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coordination Chemistry of Homoleptic Actinide(IV)-Thiocyanate Complexes.
    Carter TJ; Wilson RE
    Chemistry; 2015 Oct; 21(44):15575-82. PubMed ID: 26493880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bonding trends traversing the tetravalent actinide series: synthesis, structural, and computational analysis of An(IV)((Ar)acnac)4 complexes (An = Th, U, Np, Pu; (Ar)acnac = ArNC(Ph)CHC(Ph)O; Ar = 3,5-(t)Bu2C6H3).
    Schnaars DD; Gaunt AJ; Hayton TW; Jones MB; Kirker I; Kaltsoyannis N; May I; Reilly SD; Scott BL; Wu G
    Inorg Chem; 2012 Aug; 51(15):8557-66. PubMed ID: 22835030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitrogen Reduction by Multimetallic trans-Uranium Actinide Complexes: A Theoretical Comparison of Np and Pu to U.
    Panthi D; Adeyiga O; Dandu NK; Odoh SO
    Inorg Chem; 2019 May; 58(10):6731-6741. PubMed ID: 31050297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of CID, ETD and metastable atom-activated dissociation (MAD) of doubly and triply charged phosphorylated tau peptides.
    Cook SL; Zimmermann CM; Singer D; Fedorova M; Hoffmann R; Jackson GP
    J Mass Spectrom; 2012 Jun; 47(6):786-94. PubMed ID: 22707171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrothermal method of preparation of actinide(IV) phosphate hydrogenphosphate hydrates and study of their conversion into actinide(IV) phosphate diphosphate solid solutions.
    Dacheux N; Grandjean S; Rousselle J; Clavier N
    Inorg Chem; 2007 Nov; 46(24):10390-9. PubMed ID: 17973479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of transferrin in actinide(IV) uptake: comparison with iron(III).
    Jeanson A; Ferrand M; Funke H; Hennig C; Moisy P; Solari PL; Vidaud C; Den Auwer C
    Chemistry; 2010 Jan; 16(4):1378-87. PubMed ID: 19950335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical role of water content in the formation and reactivity of uranium, neptunium, and plutonium iodates under hydrothermal conditions: implications for the oxidative dissolution of spent nuclear fuel.
    Bray TH; Ling J; Choi ES; Brooks JS; Beitz JV; Sykora RE; Haire RG; Stanbury DM; Albrecht-Schmitt TE
    Inorg Chem; 2007 Apr; 46(9):3663-8. PubMed ID: 17397146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.