These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24661006)

  • 1. Concentration dependence of the dielectric permittivity, structure, and dynamics of aqueous NaCl solutions: comparison between the Drude oscillator and electronic continuum models.
    Renou R; Ding M; Zhu H; Szymczyk A; Malfreyt P; Ghoufi A
    J Phys Chem B; 2014 Apr; 118(14):3931-40. PubMed ID: 24661006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the concentration dependence of the surface tension and density of salt solutions: atomistic simulations using Drude oscillator polarizable and nonpolarizable models.
    Neyt JC; Wender A; Lachet V; Ghoufi A; Malfreyt P
    Phys Chem Chem Phys; 2013 Jul; 15(28):11679-90. PubMed ID: 23752676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction of Dielectric Permittivity from Atomistic Molecular Dynamics Simulations and Microwave Measurements.
    Saad-Falcon A; Zhang Z; Ryoo D; Dee J; Westafer RS; Gumbart JC
    J Phys Chem B; 2022 Oct; 126(40):8021-8029. PubMed ID: 36171073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of selected polarizable and nonpolarizable water models in molecular dynamics simulations of ice I(h).
    Gladich I; Roeselová M
    Phys Chem Chem Phys; 2012 Aug; 14(32):11371-85. PubMed ID: 22801804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic continuum model for molecular dynamics simulations.
    Leontyev IV; Stuchebrukhov AA
    J Chem Phys; 2009 Feb; 130(8):085102. PubMed ID: 19256627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of concentration on structure, dielectric, and dynamic properties of aqueous NaCl solutions using a polarizable model.
    Sala J; Guàrdia E; Martí J
    J Chem Phys; 2010 Jun; 132(21):214505. PubMed ID: 20528029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clusters of classical water models.
    Kiss PT; Baranyai A
    J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Drude polarizable model for liquid hydrogen sulfide.
    Riahi S; Rowley CN
    J Phys Chem B; 2013 May; 117(17):5222-9. PubMed ID: 23566029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydration structure in concentrated aqueous lithium chloride solutions: a reverse Monte Carlo based combination of molecular dynamics simulations and diffraction data.
    Harsányi I; Pusztai L
    J Chem Phys; 2012 Nov; 137(20):204503. PubMed ID: 23206015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric properties of organic solvents from non-polarizable molecular dynamics simulation with electronic continuum model and density functional theory.
    Lee S; Park SS
    J Phys Chem B; 2011 Nov; 115(43):12571-6. PubMed ID: 21967704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Modeling of Ion Transport in Bulk and through a Nanopore Using the Drude Polarizable Force Field.
    Prajapati JD; Mele C; Aksoyoglu MA; Winterhalter M; Kleinekathöfer U
    J Chem Inf Model; 2020 Jun; 60(6):3188-3203. PubMed ID: 32479082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of Liquid and Supercritical Hydrogen Sulfide and of Alkali Ions in the Pure and Aqueous Liquid.
    Orabi EA; Lamoureux G
    J Chem Theory Comput; 2014 Aug; 10(8):3221-35. PubMed ID: 26588292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2D-Raman-THz spectroscopy: a sensitive test of polarizable water models.
    Hamm P
    J Chem Phys; 2014 Nov; 141(18):184201. PubMed ID: 25399140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Six-site polarizable model of water based on the classical Drude oscillator.
    Yu W; Lopes PE; Roux B; MacKerell AD
    J Chem Phys; 2013 Jan; 138(3):034508. PubMed ID: 23343286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric constant and density of aqueous alkali halide solutions by molecular dynamics: A force field assessment.
    Saric D; Kohns M; Vrabec J
    J Chem Phys; 2020 Apr; 152(16):164502. PubMed ID: 32357782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-diffusion and viscosity in electrolyte solutions.
    Kim JS; Wu Z; Morrow AR; Yethiraj A; Yethiraj A
    J Phys Chem B; 2012 Oct; 116(39):12007-13. PubMed ID: 22967241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible Polarizable Water Model Parameterized via Gaussian Process Regression.
    Wang X; Tse YS
    J Chem Theory Comput; 2022 Dec; 18(12):7155-7165. PubMed ID: 36374554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating polarizable molecular ionic liquids with Drude oscillators.
    Schröder C; Steinhauser O
    J Chem Phys; 2010 Oct; 133(15):154511. PubMed ID: 20969407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure in Molecular Simulations with Scaled Charges. 1. Ionic Systems.
    Kolafa J
    J Phys Chem B; 2020 Aug; 124(34):7379-7390. PubMed ID: 32790401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarizability effects in molecular dynamics simulations of the graphene-water interface.
    Ho TA; Striolo A
    J Chem Phys; 2013 Feb; 138(5):054117. PubMed ID: 23406108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.