These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24661006)

  • 21. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations.
    Mester Z; Panagiotopoulos AZ
    J Chem Phys; 2015 Jan; 142(4):044507. PubMed ID: 25637995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.
    Moučka F; Nezbeda I; Smith WR
    J Chem Theory Comput; 2015 Apr; 11(4):1756-64. PubMed ID: 26574385
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD.
    Jiang W; Hardy DJ; Phillips JC; Mackerell AD; Schulten K; Roux B
    J Phys Chem Lett; 2011; 2(2):87-92. PubMed ID: 21572567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-polarizable force field of water based on the dielectric constant: TIP4P/ε.
    Fuentes-Azcatl R; Alejandre J
    J Phys Chem B; 2014 Feb; 118(5):1263-72. PubMed ID: 24422512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissecting ion-specific dielectric spectra of sodium-halide solutions into solvation water and ionic contributions.
    Rinne KF; Gekle S; Netz RR
    J Chem Phys; 2014 Dec; 141(21):214502. PubMed ID: 25481147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field.
    Yu H; Whitfield TW; Harder E; Lamoureux G; Vorobyov I; Anisimov VM; Mackerell AD; Roux B
    J Chem Theory Comput; 2010; 6(3):774-786. PubMed ID: 20300554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties.
    Kiss PT; Bertsyk P; Baranyai A
    J Chem Phys; 2012 Nov; 137(19):194102. PubMed ID: 23181289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Liquid-liquid coexistence in NaCl aqueous solutions: a simulation study of concentration effects.
    Corradini D; Gallo P
    J Phys Chem B; 2011 Dec; 115(48):14161-6. PubMed ID: 21851078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen-Bonding Polarizable Intermolecular Potential Model for Water.
    Jiang H; Moultos OA; Economou IG; Panagiotopoulos AZ
    J Phys Chem B; 2016 Dec; 120(48):12358-12370. PubMed ID: 27807969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate description of aqueous carbonate ions: an effective polarization model verified by neutron scattering.
    Mason PE; Wernersson E; Jungwirth P
    J Phys Chem B; 2012 Jul; 116(28):8145-53. PubMed ID: 22630587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Attraction of iodide ions by the free water surface, revealed by simulations with a polarizable force field based on Drude oscillators.
    Archontis G; Leontidis E; Andreou G
    J Phys Chem B; 2005 Sep; 109(38):17957-66. PubMed ID: 16853305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulations of liquid methanol and methanol-water mixtures with polarizable models.
    Yu H; Geerke DP; Liu H; van Gunsteren WF
    J Comput Chem; 2006 Oct; 27(13):1494-504. PubMed ID: 16838298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polarizable molecular dynamics simulations of aqueous dipeptides.
    Kucukkal TG; Stuart SJ
    J Phys Chem B; 2012 Aug; 116(30):8733-40. PubMed ID: 22747103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Communication: Nucleation rates of supersaturated aqueous NaCl using a polarizable force field.
    Jiang H; Debenedetti PG; Panagiotopoulos AZ
    J Chem Phys; 2018 Oct; 149(14):141102. PubMed ID: 30316274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational studies of aqueous interfaces of SrCl(2) salt solutions.
    Sun X; Wick CD; Dang LX
    J Phys Chem B; 2009 Oct; 113(42):13993-7. PubMed ID: 19788285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supercooling of aqueous NaCl and KCl solutions under acoustic levitation.
    Lü YJ; Wei B
    J Chem Phys; 2006 Oct; 125(14):144503. PubMed ID: 17042605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cooperative slowdown of water rotation near densely charged ions is intense but short-ranged.
    Vila Verde A; Lipowsky R
    J Phys Chem B; 2013 Sep; 117(36):10556-66. PubMed ID: 23947617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling multibody effects in ionic solutions with a concentration dependent dielectric permittivity.
    Hess B; Holm C; van der Vegt N
    Phys Rev Lett; 2006 Apr; 96(14):147801. PubMed ID: 16712122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature-dependence of the dielectric relaxation of water using non-polarizable water models.
    Zarzycki P; Gilbert B
    Phys Chem Chem Phys; 2020 Jan; 22(3):1011-1018. PubMed ID: 31825403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.