BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24661048)

  • 1. Newly developed stepwise electroless deposition enables a remarkably facile synthesis of highly active and stable amorphous Pd nanoparticle electrocatalysts for oxygen reduction reaction.
    Poon KC; Tan DC; Vo TD; Khezri B; Su H; Webster RD; Sato H
    J Am Chem Soc; 2014 Apr; 136(14):5217-20. PubMed ID: 24661048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly active Pd-P nanoparticle electrocatalyst for enhanced formic acid oxidation synthesized via stepwise electroless deposition.
    Poon KC; Khezri B; Li Y; Webster RD; Su H; Sato H
    Chem Commun (Camb); 2016 Feb; 52(17):3556-9. PubMed ID: 26841719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Modelling and Facile Synthesis of a Highly Active Boron-Doped Palladium Catalyst for the Oxygen Reduction Reaction.
    Vo Doan TT; Wang J; Poon KC; Tan DC; Khezri B; Webster RD; Su H; Sato H
    Angew Chem Int Ed Engl; 2016 Jun; 55(24):6842-7. PubMed ID: 27086729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis of Rh-Pd alloy nanodendrites as highly active and durable electrocatalysts for oxygen reduction reaction.
    Qi Y; Wu J; Zhang H; Jiang Y; Jin C; Fu M; Yang H; Yang D
    Nanoscale; 2014 Jun; 6(12):7012-8. PubMed ID: 24842604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designed synthesis of well-defined Pd@Pt core-shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts.
    Choi R; Choi SI; Choi CH; Nam KM; Woo SI; Park JT; Han SW
    Chemistry; 2013 Jun; 19(25):8190-8. PubMed ID: 23613263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst.
    Wu Z; Lv Y; Xia Y; Webley PA; Zhao D
    J Am Chem Soc; 2012 Feb; 134(4):2236-45. PubMed ID: 22257228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction.
    Ma Y; Wang R; Wang H; Linkov V; Ji S
    Phys Chem Chem Phys; 2014 Feb; 16(8):3593-602. PubMed ID: 24414092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction.
    Zhang H; Jin M; Wang J; Li W; Camargo PH; Kim MJ; Yang D; Xie Z; Xia Y
    J Am Chem Soc; 2011 Apr; 133(15):6078-89. PubMed ID: 21438596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformal Solution Deposition of Pt-Pd Titania Nanocomposite Coatings for Light-Assisted Formic Acid Electro-Oxidation.
    Muench F; El-Nagar GA; Tichter T; Zintler A; Kunz U; Molina-Luna L; Sikolenko V; Pasquini C; Lauermann I; Roth C
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43081-43092. PubMed ID: 31647212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pd-Fe nanoparticles as electrocatalysts for oxygen reduction.
    Shao MH; Sasaki K; Adzic RR
    J Am Chem Soc; 2006 Mar; 128(11):3526-7. PubMed ID: 16536519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pt@Pd(x)Cu(y)/C core-shell electrocatalysts for oxygen reduction reaction in fuel cells.
    Cochell T; Manthiram A
    Langmuir; 2012 Jan; 28(2):1579-87. PubMed ID: 22149212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pt-Pd Bimetal Popcorn Nanocrystals: Enhancing the Catalytic Performance by Combination Effect of Stable Multipetals Nanostructure and Highly Accessible Active Sites.
    Ma Y; Yin L; Cao G; Huang Q; He M; Wei W; Zhao H; Zhang D; Wang M; Yang T
    Small; 2018 Apr; 14(14):e1703613. PubMed ID: 29468819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pt-encapsulated Pd-Co nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells.
    Sarkar A; Murugan AV; Manthiram A
    Langmuir; 2010 Feb; 26(4):2894-903. PubMed ID: 20141217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Platinum covering of gold nanoparticles for utilization enhancement of Pt in electrocatalysts.
    Zhao D; Xu BQ
    Phys Chem Chem Phys; 2006 Nov; 8(43):5106-14. PubMed ID: 17091161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The shape-controlled synthesis of gallium-palladium (GaPd
    Lim SC; Chan CY; Chen KT; Tuan HY
    Nanoscale; 2019 Apr; 11(17):8518-8527. PubMed ID: 30990480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable Bromide-Triggered Synthesis of Pd@Pt Core-Shell Ultrathin Nanowires with Enhanced Electrocatalytic Performance toward Oxygen Reduction Reaction.
    Li HH; Ma SY; Fu QQ; Liu XJ; Wu L; Yu SH
    J Am Chem Soc; 2015 Jun; 137(24):7862-8. PubMed ID: 26011682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step synthesis of carbon-supported Pd@Pt/C core-shell nanoparticles as oxygen reduction electrocatalysts and their enhanced activity and stability.
    Lim Y; Kim SK; Lee SC; Choi J; Nahm KS; Yoo SJ; Kim P
    Nanoscale; 2014 Apr; 6(8):4038-42. PubMed ID: 24526350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiply twinned Pt-Pd nanoicosahedrons as highly active electrocatalysts for methanol oxidation.
    Yin AX; Min XQ; Zhu W; Wu HS; Zhang YW; Yan CH
    Chem Commun (Camb); 2012 Jan; 48(4):543-5. PubMed ID: 22068379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction.
    Perini L; Durante C; Favaro M; Perazzolo V; Agnoli S; Schneider O; Granozzi G; Gennaro A
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1170-9. PubMed ID: 25525718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction.
    Sasaki K; Zhang L; Adzic RR
    Phys Chem Chem Phys; 2008 Jan; 10(1):159-67. PubMed ID: 18075695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.