These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24661194)

  • 1. Shape-selective deposition and assembly of anisotropic nanoparticles.
    Zhou Y; Zhou X; Park DJ; Torabi K; Brown KA; Jones MR; Zhang C; Schatz GC; Mirkin CA
    Nano Lett; 2014; 14(4):2157-61. PubMed ID: 24661194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymorphic Assembly from Beveled Gold Triangular Nanoprisms.
    Kim J; Song X; Ji F; Luo B; Ice NF; Liu Q; Zhang Q; Chen Q
    Nano Lett; 2017 May; 17(5):3270-3275. PubMed ID: 28445071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchic Interfacial Nanocube Assembly for Sensitive, Selective, and Quantitative DNA Detection with Surface-Enhanced Raman Scattering.
    Kim M; Ko SM; Lee C; Son J; Kim J; Kim JM; Nam JM
    Anal Chem; 2019 Aug; 91(16):10467-10476. PubMed ID: 31265240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic gold nanoassembly: a study on polarization-dependent and polarization-selective surface-enhanced Raman scattering.
    Hossain MK; Huang GG; Tanaka Y; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2015 Feb; 17(6):4268-76. PubMed ID: 25572301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS.
    Liu XL; Liang S; Nan F; Yang ZJ; Yu XF; Zhou L; Hao ZH; Wang QQ
    Nanoscale; 2013 Jun; 5(12):5368-74. PubMed ID: 23649164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Self-Assembly of Metallacycle-Bridged Gold Nanoparticles for Surface-Enhanced Raman Scattering.
    Zheng W; Yang XL; Wu GY; Cheng L
    Chemistry; 2020 Sep; 26(51):11695-11700. PubMed ID: 32648611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion in the SERS enhancement with silver nanocube dimers.
    Lee SY; Hung L; Lang GS; Cornett JE; Mayergoyz ID; Rabin O
    ACS Nano; 2010 Oct; 4(10):5763-72. PubMed ID: 20929243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the surface-enhanced Raman scattering enhancement factors of hot spots formed between an individual Ag nanowire and a single Ag nanocube.
    Camargo PH; Cobley CM; Rycenga M; Xia Y
    Nanotechnology; 2009 Oct; 20(43):434020. PubMed ID: 19801754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.
    Zhang Q; Large N; Wang H
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic Particle Fabrication Using Thermal Scanning Probe Lithography.
    Das T; Smith JD; Uddin MH; Dagastine RR
    ACS Appl Mater Interfaces; 2022 May; 14(17):19878-19888. PubMed ID: 35451830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures.
    Lim SI; Zhong CJ
    Acc Chem Res; 2009 Jun; 42(6):798-808. PubMed ID: 19378982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precisely Shaped, Uniformly Formed Gold Nanocubes with Ultrahigh Reproducibility in Single-Particle Scattering and Surface-Enhanced Raman Scattering.
    Park JE; Lee Y; Nam JM
    Nano Lett; 2018 Oct; 18(10):6475-6482. PubMed ID: 30153413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using the Langmuir-Schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films.
    Lee YH; Lee CK; Tan B; Rui Tan JM; Phang IY; Ling XY
    Nanoscale; 2013 Jul; 5(14):6404-12. PubMed ID: 23740152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary Assembly of Liquid Particles.
    Shillingford C; Kim BM; Weck M
    Small; 2020 Apr; 16(16):e1907523. PubMed ID: 32191379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape-selective catalysis and surface enhanced Raman scattering studies using Ag nanocubes, nanospheres and aggregated anisotropic nanostructures.
    Kundu S; Dai W; Chen Y; Ma L; Yue Y; Sinyukov AM; Liang H
    J Colloid Interface Sci; 2017 Jul; 498():248-262. PubMed ID: 28342308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS).
    Gopinath A; Boriskina SV; Reinhard BM; Dal Negro L
    Opt Express; 2009 Mar; 17(5):3741-53. PubMed ID: 19259215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Single-Molecule Surface-Enhanced Raman Scattering.
    Zhan P; Wen T; Wang ZG; He Y; Shi J; Wang T; Liu X; Lu G; Ding B
    Angew Chem Int Ed Engl; 2018 Mar; 57(11):2846-2850. PubMed ID: 29377456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoassembly of gold nanoparticles: An active substrate for size-dependent surface-enhanced Raman scattering.
    Hossain MK
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Dec; 242():118759. PubMed ID: 32795952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman enhancement factor of a single tunable nanoplasmonic resonator.
    Su KH; Durant S; Steele JM; Xiong Y; Sun C; Zhang X
    J Phys Chem B; 2006 Mar; 110(9):3964-8. PubMed ID: 16509683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the effect of Ag nanocube polydispersity on gap-mode SERS enhancement factors.
    Dill TJ; Rozin MJ; Brown ER; Palani S; Tao AR
    Analyst; 2016 Jun; 141(12):3916-24. PubMed ID: 27169362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.