BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 24661571)

  • 1. Laying a solid foundation for Manhattan--'setting the functional basis for the post-GWAS era'.
    Zhang X; Bailey SD; Lupien M
    Trends Genet; 2014 Apr; 30(4):140-9. PubMed ID: 24661571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endometrial vezatin and its association with endometriosis risk.
    Holdsworth-Carson SJ; Fung JN; Luong HT; Sapkota Y; Bowdler LM; Wallace L; Teh WT; Powell JE; Girling JE; Healey M; Montgomery GW; Rogers PA
    Hum Reprod; 2016 May; 31(5):999-1013. PubMed ID: 27005890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negligible impact of rare autoimmune-locus coding-region variants on missing heritability.
    Hunt KA; Mistry V; Bockett NA; Ahmad T; Ban M; Barker JN; Barrett JC; Blackburn H; Brand O; Burren O; Capon F; Compston A; Gough SC; Jostins L; Kong Y; Lee JC; Lek M; MacArthur DG; Mansfield JC; Mathew CG; Mein CA; Mirza M; Nutland S; Onengut-Gumuscu S; Papouli E; Parkes M; Rich SS; Sawcer S; Satsangi J; Simmonds MJ; Trembath RC; Walker NM; Wozniak E; Todd JA; Simpson MA; Plagnol V; van Heel DA
    Nature; 2013 Jun; 498(7453):232-5. PubMed ID: 23698362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Into the Wild: GWAS Exploration of Non-coding RNAs.
    Giral H; Landmesser U; Kratzer A
    Front Cardiovasc Med; 2018; 5():181. PubMed ID: 30619888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Missing heritability of common diseases and treatments outside the protein-coding exome.
    Sadee W; Hartmann K; Seweryn M; Pietrzak M; Handelman SK; Rempala GA
    Hum Genet; 2014 Oct; 133(10):1199-215. PubMed ID: 25107510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in the Untranslated Genome and Susceptibility to Infections.
    Ramsuran V; Ewy R; Nguyen H; Kulkarni S
    Front Immunol; 2018; 9():2046. PubMed ID: 30245696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress on functional mechanisms of colorectal cancer causal SNPs in post-GWAS.
    Yige L; Dandan Z
    Yi Chuan; 2021 Mar; 43(3):203-214. PubMed ID: 33724205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intergenic disease-associated regions are abundant in novel transcripts.
    Bartonicek N; Clark MB; Quek XC; Torpy JR; Pritchard AL; Maag JLV; Gloss BS; Crawford J; Taft RJ; Hayward NK; Montgomery GW; Mattick JS; Mercer TR; Dinger ME
    Genome Biol; 2017 Dec; 18(1):241. PubMed ID: 29284497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of breast cancer associated variants that modulate transcription factor binding.
    Liu Y; Walavalkar NM; Dozmorov MG; Rich SS; Civelek M; Guertin MJ
    PLoS Genet; 2017 Sep; 13(9):e1006761. PubMed ID: 28957321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular genetic studies of complex phenotypes.
    Marian AJ
    Transl Res; 2012 Feb; 159(2):64-79. PubMed ID: 22243791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterising the genetic basis of immune response variation to identify causal mechanisms underlying disease susceptibility.
    Rotival M
    HLA; 2019 Sep; 94(3):275-284. PubMed ID: 31115186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD.
    Groß C; Bortoluzzi C; de Ridder D; Megens HJ; Groenen MAM; Reinders M; Bosse M
    PLoS Genet; 2020 Sep; 16(9):e1009027. PubMed ID: 32966296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic associations of breast and prostate cancer are enriched for regulatory elements identified in disease-related tissues.
    Chen H; Kichaev G; Bien SA; MacDonald JW; Wang L; Bammler TK; Auer P; Pasaniuc B; Lindström S
    Hum Genet; 2019 Oct; 138(10):1091-1104. PubMed ID: 31230194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-coding genetic variants in human disease.
    Zhang F; Lupski JR
    Hum Mol Genet; 2015 Oct; 24(R1):R102-10. PubMed ID: 26152199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Where in the genome are significant single nucleotide polymorphisms from genome-wide association studies located?
    Günther T; Schmitt AO; Bortfeldt RH; Hinney A; Hebebrand J; Brockmann GA
    OMICS; 2011; 15(7-8):507-12. PubMed ID: 21699402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges and progress in interpretation of non-coding genetic variants associated with human disease.
    Zhu Y; Tazearslan C; Suh Y
    Exp Biol Med (Maywood); 2017 Jul; 242(13):1325-1334. PubMed ID: 28581336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic architecture of quantitative traits in beef cattle revealed by genome wide association studies of imputed whole genome sequence variants: I: feed efficiency and component traits.
    Zhang F; Wang Y; Mukiibi R; Chen L; Vinsky M; Plastow G; Basarab J; Stothard P; Li C
    BMC Genomics; 2020 Jan; 21(1):36. PubMed ID: 31931702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-GWAS in prostate cancer: from genetic association to biological contribution.
    Farashi S; Kryza T; Clements J; Batra J
    Nat Rev Cancer; 2019 Jan; 19(1):46-59. PubMed ID: 30538273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome.
    Tak YG; Farnham PJ
    Epigenetics Chromatin; 2015; 8():57. PubMed ID: 26719772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic basis of systemic lupus erythematosus: What are the risk factors and what have we learned.
    Teruel M; Alarcón-Riquelme ME
    J Autoimmun; 2016 Nov; 74():161-175. PubMed ID: 27522116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.