BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24661599)

  • 21. Inhibition of insect olfactory behavior by an airborne antagonist of the insect odorant receptor co-receptor subunit.
    Kepchia D; Moliver S; Chohan K; Phillips C; Luetje CW
    PLoS One; 2017; 12(5):e0177454. PubMed ID: 28562598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional agonism of insect odorant receptor ion channels.
    Jones PL; Pask GM; Rinker DC; Zwiebel LJ
    Proc Natl Acad Sci U S A; 2011 May; 108(21):8821-5. PubMed ID: 21555561
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-activity relationship of a broad-spectrum insect odorant receptor agonist.
    Taylor RW; Romaine IM; Liu C; Murthi P; Jones PL; Waterson AG; Sulikowski GA; Zwiebel LJ
    ACS Chem Biol; 2012 Oct; 7(10):1647-52. PubMed ID: 22924767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calmodulin is involved in the Ca2+-dependent activation of ceramide kinase as a calcium sensor.
    Mitsutake S; Igarashi Y
    J Biol Chem; 2005 Dec; 280(49):40436-41. PubMed ID: 16203736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Site-specific modification of calmodulin Ca²(+) affinity tunes the skeletal muscle ryanodine receptor activation profile.
    Jiang J; Zhou Y; Zou J; Chen Y; Patel P; Yang JJ; Balog EM
    Biochem J; 2010 Nov; 432(1):89-99. PubMed ID: 20815817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The N-terminal Ca2+-independent calmodulin-binding site on the inositol 1,4,5-trisphosphate receptor is responsible for calmodulin inhibition, even though this inhibition requires Ca2+.
    Kasri NN; Bultynck G; Smyth J; Szlufcik K; Parys JB; Callewaert G; Missiaen L; Fissore RA; Mikoshiba K; de Smedt H
    Mol Pharmacol; 2004 Aug; 66(2):276-84. PubMed ID: 15266018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An inhibitor of Na(+)/Ca(2+) exchange blocks activation of insect olfactory receptors.
    Bobkov Y; Corey E; Ache B
    Biochem Biophys Res Commun; 2014 Jul; 450(2):1104-9. PubMed ID: 24996179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blockade of insect odorant receptor currents by amiloride derivatives.
    Pask GM; Bobkov YV; Corey EA; Ache BW; Zwiebel LJ
    Chem Senses; 2013 Mar; 38(3):221-9. PubMed ID: 23292750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium binding sites of calmodulin and electron transfer by neuronal nitric oxide synthase.
    Stevens-Truss R; Beckingham K; Marletta MA
    Biochemistry; 1997 Oct; 36(40):12337-45. PubMed ID: 9315874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Odorant receptor might be related to sperm DNA integrity in Apis cerana cerana.
    Guo L; Zhao H; Xu B; Jiang Y
    Anim Reprod Sci; 2018 Jun; 193():33-39. PubMed ID: 29628206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemoreceptor co-expression in
    Task D; Lin CC; Vulpe A; Afify A; Ballou S; Brbic M; Schlegel P; Raji J; Jefferis GSXE; Li H; Menuz K; Potter CJ
    Elife; 2022 Apr; 11():. PubMed ID: 35442190
    [No Abstract]   [Full Text] [Related]  

  • 32. The role of mitochondria in shaping odor responses in Drosophila melanogaster olfactory sensory neurons.
    Lucke J; Kaltofen S; Hansson BS; Wicher D
    Cell Calcium; 2020 May; 87():102179. PubMed ID: 32070926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insect odorant response sensitivity is tuned by metabotropically autoregulated olfactory receptors.
    Getahun MN; Olsson SB; Lavista-Llanos S; Hansson BS; Wicher D
    PLoS One; 2013; 8(3):e58889. PubMed ID: 23554952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a).
    Pelz D; Roeske T; Syed Z; de Bruyne M; Galizia CG
    J Neurobiol; 2006 Dec; 66(14):1544-63. PubMed ID: 17103386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A series of point mutations reveal interactions between the calcium-binding sites of calmodulin.
    Starovasnik MA; Su DR; Beckingham K; Klevit RE
    Protein Sci; 1992 Feb; 1(2):245-53. PubMed ID: 1363934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorylation via PKC Regulates the Function of the Drosophila Odorant Co-Receptor.
    Sargsyan V; Getahun MN; Llanos SL; Olsson SB; Hansson BS; Wicher D
    Front Cell Neurosci; 2011; 5():5. PubMed ID: 21720521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impacts of OrX and cAMP-insensitive Orco to the insect olfactory heteromer activity.
    Kolesov DV; Ivanova VO; Sokolinskaya EL; Kost LA; Balaban PM; Lukyanov KA; Nikitin ES; Bogdanov AM
    Mol Biol Rep; 2021 May; 48(5):4549-4561. PubMed ID: 34129187
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid degeneration of
    Task D; Potter CJ
    MicroPubl Biol; 2021 May; 2021():. PubMed ID: 34007957
    [No Abstract]   [Full Text] [Related]  

  • 39. Use of machine learning to identify novel, behaviorally active antagonists of the insect odorant receptor co-receptor (Orco) subunit.
    Kepchia D; Xu P; Terryn R; Castro A; Schürer SC; Leal WS; Luetje CW
    Sci Rep; 2019 Mar; 9(1):4055. PubMed ID: 30858563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A conditional Orco requirement in the somatic cyst cells for maintaining spermatids in a tight bundle in Drosophila testis.
    Dubey P; Joti P; Ray K
    J Biosci; 2016 Jun; 41(2):219-27. PubMed ID: 27240982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.