BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 2466172)

  • 1. Pinacidil: history, basic pharmacology, and therapeutic implications.
    Ahnfelt-Rønne I
    J Cardiovasc Pharmacol; 1988; 12 Suppl 2():S1-4. PubMed ID: 2466172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pinacidil-induced vascular relaxation: comparison to other vasodilators and to classical mechanisms of vasodilation.
    Cohen ML; Kurz KD
    J Cardiovasc Pharmacol; 1988; 12 Suppl 2():S5-9. PubMed ID: 2466179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pinacidil. Preclinical investigations.
    Ahnfelt-Rønne I
    Drugs; 1988; 36 Suppl 7():4-9. PubMed ID: 3076134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium channels and human corporeal smooth muscle cell tone: diabetes and relaxation of human corpus cavernosum smooth muscle by adenosine triphosphate sensitive potassium channel openers.
    Venkateswarlu K; Giraldi A; Zhao W; Wang HZ; Melman A; Spektor M; Christ GJ
    J Urol; 2002 Jul; 168(1):355-61. PubMed ID: 12050569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pinacidil. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the treatment of hypertension.
    Friedel HA; Brogden RN
    Drugs; 1990 Jun; 39(6):929-67. PubMed ID: 2196168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic and coronary hemodynamic effects of pinacidil, a new antihypertensive agent, in awake dogs: comparison with hydralazine.
    Kawashima S; Liang CS
    J Pharmacol Exp Ther; 1985 Feb; 232(2):369-75. PubMed ID: 3968638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pinacidil relaxes porcine and human coronary arteries by activating ATP-dependent potassium channels in smooth muscle cells.
    Gollasch M; Bychkov R; Ried C; Behrendt F; Scholze S; Luft FC; Haller H
    J Pharmacol Exp Ther; 1995 Nov; 275(2):681-92. PubMed ID: 7473155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium channel modulation: a new drug principle for regulation of smooth muscle contractility. Studies on isolated airways and arteries.
    Nielsen-Kudsk JE
    Dan Med Bull; 1996 Dec; 43(5):429-47. PubMed ID: 8960816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diuretic effect induced by intrarenal infusion of pinacidil in anesthetized dogs.
    Morimoto S; Matsumura Y; Sasaki Y; Takakuwa T; Kageyama M
    J Pharmacol Exp Ther; 1987 Sep; 242(3):1050-5. PubMed ID: 3656107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NTP Toxicology and Carcinogenesis Studies of Coumarin (CAS No. 91-64-5) in F344/N Rats and B6C3F1 Mice (Gavage Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1993 Sep; 422():1-340. PubMed ID: 12616289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of antihypertensive, renal hemodynamic, and humoral effects of pinacidil and hydralazine monotherapy.
    Abraham PA; Halstenson CE; Matzke GR; Keane WF
    J Clin Hypertens; 1987 Dec; 3(4):439-51. PubMed ID: 3330986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RWJ 26629, a new potassium channel opener and vascular smooth muscle relaxant: a potential antihypertensive and antianginal agent.
    Katz LB; Giardino EC; Salata JJ; Moore JB; Falotico R
    J Pharmacol Exp Ther; 1993 Nov; 267(2):648-56. PubMed ID: 8246137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitors of nitric oxide synthesis and ischemia/reperfusion attenuate coronary vasodilator response to pinacidil in isolated rat heart.
    Maczewski M; Beresewicz A
    J Physiol Pharmacol; 1997 Dec; 48(4):737-49. PubMed ID: 9444621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relaxant responses to calcium channel antagonists and potassium channel opener in human saphenous vein.
    Ford C; Bieger D; Mong K; Tabrizchi R
    Auton Autacoid Pharmacol; 2006 Jan; 26(1):7-13. PubMed ID: 16371061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pinacidil, a new vasodilator, in the treatment of patients with moderate to severe hypertension.
    Koliopoulos K; Papadoyannis DE; Karatzas NB
    Eur J Clin Pharmacol; 1984; 27(3):287-9. PubMed ID: 6510455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamic characterization of pinacidil in rats. Comparison with hydralazine.
    Thoolen MJ; Van Meel JC; Wilffert B; Timmermans PB; van Zwieten PA
    Pharmacology; 1983; 27(5):245-54. PubMed ID: 6318232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical pharmacology of pinacidil, a prototype for drugs that affect potassium channels.
    Goldberg MR
    J Cardiovasc Pharmacol; 1988; 12 Suppl 2():S41-7. PubMed ID: 2466178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N''-cyano-N-4-pyridyl-N'-1,2,2-trimethylpropylguanidine, monohydrate (P 1134): a new, potent vasodilator.
    Arrigoni-Martelli E; Nielsen CK; Olsen UB; Petersen HJ
    Experientia; 1980 Apr; 36(4):445-7. PubMed ID: 7379920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vascular effects in dogs of pinacidil (P 1134), a novel vasoactive antihypertensive agent.
    Olsen UB; Arrigoni-Martelli E
    Eur J Pharmacol; 1983 Apr; 88(4):389-92. PubMed ID: 6407852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and pharmacological evaluation of N-(6-functionalized-amino-3-pyridyl)-N'-bicycloalkyl-N''-cyanoguanidine s as antihypertensive agents.
    Eda M; Takemoto T; Okada T; Sakashita H; Matzno S; Gohda M; Hayashi K; Nakamura N; Fukaya C
    Chem Pharm Bull (Tokyo); 1996 Feb; 44(2):307-13. PubMed ID: 8998837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.