These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 2466173)

  • 1. The role of potassium channels in vascular relaxation. Proceedings of a symposium on pinacidil. Indianapolis, Indiana, June 25, 1987.
    J Cardiovasc Pharmacol; 1988; 12 Suppl 2():S1-47. PubMed ID: 2466173
    [No Abstract]   [Full Text] [Related]  

  • 2. Pinacidil relaxes porcine and human coronary arteries by activating ATP-dependent potassium channels in smooth muscle cells.
    Gollasch M; Bychkov R; Ried C; Behrendt F; Scholze S; Luft FC; Haller H
    J Pharmacol Exp Ther; 1995 Nov; 275(2):681-92. PubMed ID: 7473155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium channel modulation: a new drug principle for regulation of smooth muscle contractility. Studies on isolated airways and arteries.
    Nielsen-Kudsk JE
    Dan Med Bull; 1996 Dec; 43(5):429-47. PubMed ID: 8960816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium channels and human corporeal smooth muscle cell tone: diabetes and relaxation of human corpus cavernosum smooth muscle by adenosine triphosphate sensitive potassium channel openers.
    Venkateswarlu K; Giraldi A; Zhao W; Wang HZ; Melman A; Spektor M; Christ GJ
    J Urol; 2002 Jul; 168(1):355-61. PubMed ID: 12050569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pinacidil opens K+-selective channels causing hyperpolarization and relaxation of noradrenaline contractions in rat mesenteric resistance vessels.
    Videbaek LM; Aalkjaer C; Mulvany MJ
    Br J Pharmacol; 1988 Sep; 95(1):103-8. PubMed ID: 3219470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effects of genistein on ATP-sensitive K+ channels in rabbit portal vein smooth muscle.
    Ogata R; Kitamura K; Ito Y; Nakano H
    Br J Pharmacol; 1997 Dec; 122(7):1395-404. PubMed ID: 9421287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential relaxant responses to pinacidil of smooth muscle preparations contracted by a high concentration of potassium in isoosmolar and hyperosmolar solutions.
    Nielsen-Kudsk JE; Mellemkjaer S; Nielsen CB; Siggaard C
    Pharmacol Toxicol; 1990 Sep; 67(3):252-4. PubMed ID: 2255682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relaxation response to pinacidil and diazoxide in the mouse isolated distal colon.
    Lebrun P; Fontaine J
    Pharmacology; 1990; 40(1):21-6. PubMed ID: 2330384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contraction induced either by iso-osmolar or hyper-osmolar potassium-rich solutions influences relaxant responses to pinacidil and verapamil in rat isolated aorta.
    Nielsen CB
    J Pharm Pharmacol; 1993 Oct; 45(10):862-5. PubMed ID: 7904623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pinacidil actions on ion channels in vascular muscle.
    Hermsmeyer RK
    J Cardiovasc Pharmacol; 1988; 12 Suppl 2():S17-22. PubMed ID: 2466175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abnormal activation of K(+) channels in aortic smooth muscle of rats with endotoxic shock: electrophysiological and functional evidence.
    Chen SJ; Wu CC; Yang SN; Lin CI; Yen MH
    Br J Pharmacol; 2000 Sep; 131(2):213-22. PubMed ID: 10991913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pinacidil-induced vascular relaxation: comparison to other vasodilators and to classical mechanisms of vasodilation.
    Cohen ML; Kurz KD
    J Cardiovasc Pharmacol; 1988; 12 Suppl 2():S5-9. PubMed ID: 2466179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion channel effects of pinacidil in vascular muscle.
    Hermsmeyer K
    Drugs; 1988; 36 Suppl 7():29-32. PubMed ID: 2474427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pinacidil and other cyanoguanidine derivatives on guinea-pig isolated trachea, aorta and pulmonary artery.
    Nielsen-Kudsk JE; Bang L
    Eur J Pharmacol; 1991 Aug; 201(1):97-102. PubMed ID: 1794417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relation between vascular relaxant and cardiac electrophysiological effects of pinacidil.
    Steinberg MI; Ertel P; Smallwood JK; Wyss V; Zimmerman K
    J Cardiovasc Pharmacol; 1988; 12 Suppl 2():S30-40. PubMed ID: 2466177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the ATP-sensitive potassium channels (KATP) expressed in guinea pig bladder smooth muscle cells.
    Gopalakrishnan M; Whiteaker KL; Molinari EJ; Davis-Taber R; Scott VE; Shieh CC; Buckner SA; Milicic I; Cain JC; Postl S; Sullivan JP; Brioni JD
    J Pharmacol Exp Ther; 1999 Apr; 289(1):551-8. PubMed ID: 10087049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of VA-045, a novel apovincaminic acid derivative, on rabbit basilar artery.
    Yamada S; Okuyama S; Kamata K
    Res Commun Mol Pathol Pharmacol; 1995 Nov; 90(2):269-76. PubMed ID: 8747794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cromakalim, a potassium channel activator: a comparison of its cardiovascular haemodynamic profile and tissue specificity with those of pinacidil and nicorandil.
    Longman SD; Clapham JC; Wilson C; Hamilton TC
    J Cardiovasc Pharmacol; 1988; 12(5):535-42. PubMed ID: 2468052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pinacidil on ion permeability in resting and contracted resistance vessels.
    Videbaek LM; Aalkjaer C; Hughes AD; Mulvany MJ
    Am J Physiol; 1990 Jul; 259(1 Pt 2):H14-22. PubMed ID: 1695818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and structure-activity relationships of novel phenylcyanoguanidine derivatives as potassium channel openers.
    Yoshiizumi K; Ikeda S; Goto K; Morita T; Nishimura N; Sukamoto T; Yoshino K
    Chem Pharm Bull (Tokyo); 1996 Nov; 44(11):2042-50. PubMed ID: 8945769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.