BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2466176)

  • 1. Effect of pinacidil on norepinephrine- and potassium-induced contractions and membrane potential in rat and human resistance vessels and in rat aorta.
    Videbaek LM; Aalkjaer C; Mulvany MJ
    J Cardiovasc Pharmacol; 1988; 12 Suppl 2():S23-9. PubMed ID: 2466176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pinacidil opens K+-selective channels causing hyperpolarization and relaxation of noradrenaline contractions in rat mesenteric resistance vessels.
    Videbaek LM; Aalkjaer C; Mulvany MJ
    Br J Pharmacol; 1988 Sep; 95(1):103-8. PubMed ID: 3219470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vasodilatation with pinacidil. Mode of action in rat resistance vessels.
    Videbaek LM; Aalkjaer C; Mulvany MJ
    Drugs; 1988; 36 Suppl 7():33-40. PubMed ID: 3254830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pinacidil on ion permeability in resting and contracted resistance vessels.
    Videbaek LM; Aalkjaer C; Hughes AD; Mulvany MJ
    Am J Physiol; 1990 Jul; 259(1 Pt 2):H14-22. PubMed ID: 1695818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mode of action of pinacidil and its analogs P1060 and P1368: results of studies in rat blood vessels.
    Weston AH; Southerton JS; Bray KM; Newgreen DT; Taylor SG
    J Cardiovasc Pharmacol; 1988; 12 Suppl 2():S10-6. PubMed ID: 2466174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro studies on the mode of action of pinacidil.
    Weston AH; Bray KM; Duty S; McHarg AD; Newgreen DT; Southerton JS
    Drugs; 1988; 36 Suppl 7():10-28. PubMed ID: 2855517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pinacidil actions on ion channels in vascular muscle.
    Hermsmeyer RK
    J Cardiovasc Pharmacol; 1988; 12 Suppl 2():S17-22. PubMed ID: 2466175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane hyperpolarization inhibits agonist-induced synthesis of inositol 1,4,5-trisphosphate in rabbit mesenteric artery.
    Itoh T; Seki N; Suzuki S; Ito S; Kajikuri J; Kuriyama H
    J Physiol; 1992; 451():307-28. PubMed ID: 1328618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of pinacidil and cromakalim on vascular relaxation and sympathetic neurotransmission.
    Cai B; Hao Q; Greenberg SS; deBoisblanc B; Gillott D; Goharderakhshan R; Summer WR; Hyman A; Lippton H
    Can J Physiol Pharmacol; 1994 Jul; 72(7):801-10. PubMed ID: 7828089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contraction induced either by iso-osmolar or hyper-osmolar potassium-rich solutions influences relaxant responses to pinacidil and verapamil in rat isolated aorta.
    Nielsen CB
    J Pharm Pharmacol; 1993 Oct; 45(10):862-5. PubMed ID: 7904623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-dependence of the effects of pinacidil on rat aorta.
    Wanstall JC; O'Donnell SR; Zeng XP
    J Pharm Pharmacol; 1989 Sep; 41(9):641-3. PubMed ID: 2479732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the effects of a new vasodilator pinacidil and nifedipine on isolated blood vessels.
    Mikkelsen E; Pedersen OL
    Acta Pharmacol Toxicol (Copenh); 1982 Nov; 51(5):407-12. PubMed ID: 7164822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of pinacidil on contractile proteins in high K(+)-treated intact, and in beta-escin-treated skinned smooth muscle of the rabbit mesenteric artery.
    Itoh T; Suzuki S; Kuriyama H
    Br J Pharmacol; 1991 Jul; 103(3):1697-702. PubMed ID: 1933133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that pinacidil may promote the opening of ATP-sensitive K+ channels yet inhibit the opening of Ca2(+)-activated K+ channels in K(+)-contracted canine mesenteric artery.
    Masuzawa K; Matsuda T; Asano M
    Br J Pharmacol; 1990 May; 100(1):143-9. PubMed ID: 2115387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pinacidil relaxes porcine and human coronary arteries by activating ATP-dependent potassium channels in smooth muscle cells.
    Gollasch M; Bychkov R; Ried C; Behrendt F; Scholze S; Luft FC; Haller H
    J Pharmacol Exp Ther; 1995 Nov; 275(2):681-92. PubMed ID: 7473155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of KRN2391, a novel vasodilator, compared with those of cromakalim, pinacidil and nifedipine in rat aorta.
    Kashiwabara T; Nakajima S; Izawa T; Fukushima H; Nishikori K
    Eur J Pharmacol; 1991 Apr; 196(1):1-7. PubMed ID: 1678711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of racemic, (+)- and (-)-pinacidil on the membrane potential of the rat aorta.
    Doggrell SA; Bishop BE; Barnett CW
    J Pharm Pharmacol; 1995 Apr; 47(4):307-9. PubMed ID: 7791028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoglycemic sulfonylureas antagonize the effects of cromakalim and pinacidil on 86Rb fluxes and contractile activity in the rat aorta.
    Lebrun P; Fang ZY; Antoine MH; Herchuelz A; Hermann M; Berkenboom G; Fontaine J
    Pharmacology; 1990; 41(1):36-48. PubMed ID: 2122482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Similarities in the mechanism of action of two new vasodilator drugs: pinacidil and BRL 34915.
    Cook NS; Quast U; Hof RP; Baumlin Y; Pally C
    J Cardiovasc Pharmacol; 1988 Jan; 11(1):90-9. PubMed ID: 2450263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of action of endothelin-1 as compared with other agonists in vascular smooth muscle.
    Wallnöfer A; Weir S; Rüegg U; Cauvin C
    J Cardiovasc Pharmacol; 1989; 13 Suppl 5():S23-31; discussion S45. PubMed ID: 2473323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.