BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24662204)

  • 1. Methods for assigning confidence to toxicity data with multiple values--Identifying experimental outliers.
    Steinmetz FP; Enoch SJ; Madden JC; Nelms MD; Rodriguez-Sanchez N; Rowe PH; Wen Y; Cronin MT
    Sci Total Environ; 2014 Jun; 482-483():358-65. PubMed ID: 24662204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSARs in ecotoxicological risk assessment.
    de Roode D; Hoekzema C; de Vries-Buitenweg S; van de Waart B; van der Hoeven J
    Regul Toxicol Pharmacol; 2006 Jun; 45(1):24-35. PubMed ID: 16529851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling acute oral mammalian toxicity. 1. Definition of a quantifiable baseline effect.
    Koleva YK; Cronin MT; Madden JC; Schwöbel JA
    Toxicol In Vitro; 2011 Oct; 25(7):1281-93. PubMed ID: 21557997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes.
    Gissi A; Gadaleta D; Floris M; Olla S; Carotti A; Novellino E; Benfenati E; Nicolotti O
    ALTEX; 2014; 31(1):23-36. PubMed ID: 24247988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of qsars for ecotoxicity: a method for assigning quality and confidence.
    Schultz TW; Netzeva TI; Cronin MT
    SAR QSAR Environ Res; 2004; 15(5-6):385-97. PubMed ID: 15669697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges for computational structure-activity modelling for predicting chemical toxicity: future improvements?
    Combes RD
    Expert Opin Drug Metab Toxicol; 2011 Sep; 7(9):1129-40. PubMed ID: 21756202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substance-tailored testing strategies in toxicology: an in silico methodology based on QSAR modeling of toxicological thresholds and Monte Carlo simulations of toxicological testing.
    Péry AR; Desmots S; Mombelli E
    Regul Toxicol Pharmacol; 2010 Feb; 56(1):82-92. PubMed ID: 19766156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural alerts--a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay.
    von der Ohe PC; Kühne R; Ebert RU; Altenburger R; Liess M; Schüürmann G
    Chem Res Toxicol; 2005 Mar; 18(3):536-55. PubMed ID: 15777094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of QSAR models for bioconcentration suitable for REACH.
    Gissi A; Nicolotti O; Carotti A; Gadaleta D; Lombardo A; Benfenati E
    Sci Total Environ; 2013 Jul; 456-457():325-32. PubMed ID: 23624006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ranking of aquatic toxicity of esters modelled by QSAR.
    Papa E; Battaini F; Gramatica P
    Chemosphere; 2005 Feb; 58(5):559-70. PubMed ID: 15620749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative structure-activity relationship to predict acute fish toxicity of organic solvents.
    Levet A; Bordes C; Clément Y; Mignon P; Chermette H; Marote P; Cren-Olivé C; Lantéri P
    Chemosphere; 2013 Oct; 93(6):1094-103. PubMed ID: 23866172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis.
    Zhu H; Tropsha A; Fourches D; Varnek A; Papa E; Gramatica P; Oberg T; Dao P; Cherkasov A; Tetko IV
    J Chem Inf Model; 2008 Apr; 48(4):766-84. PubMed ID: 18311912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of the baseline toxicity of non-polar narcotic chemical mixtures by QSAR approach.
    Luan F; Xu X; Liu H; Cordeiro MN
    Chemosphere; 2013 Feb; 90(6):1980-6. PubMed ID: 23177708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity assessment of organic pollutants: reliability of bioluminescence inhibition assay and univariate QSAR models using freshly prepared Vibrio fischeri.
    Parvez S; Venkataraman C; Mukherji S
    Toxicol In Vitro; 2008 Oct; 22(7):1806-13. PubMed ID: 18701087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods.
    Cheng F; Shen J; Yu Y; Li W; Liu G; Lee PW; Tang Y
    Chemosphere; 2011 Mar; 82(11):1636-43. PubMed ID: 21145574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSARS for toxicity to the bacterium Sinorhizobium meliloti.
    Lessigiarska I; Cronin MT; Worth AP; Dearden JC; Netzeva TI
    SAR QSAR Environ Res; 2004 Jun; 15(3):169-90. PubMed ID: 15293545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing computational toxicology models with phytochemicals.
    Valerio LG; Arvidson KB; Busta E; Minnier BL; Kruhlak NL; Benz RD
    Mol Nutr Food Res; 2010 Feb; 54(2):186-94. PubMed ID: 20024931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative structure-activity relationship for prediction of the toxicity of phenols on Photobacterium phosphoreum.
    Li X; Wang Z; Liu H; Yu H
    Bull Environ Contam Toxicol; 2012 Jul; 89(1):27-31. PubMed ID: 22562268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow.
    Yuan H; Wang YY; Cheng YY
    J Mol Graph Model; 2007 Jul; 26(1):327-35. PubMed ID: 17224289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.