BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24662578)

  • 1. Modulation of the N30 generators of the somatosensory evoked potentials by the mirror neuron system.
    Cebolla AM; Palmero-Soler E; Dan B; Cheron G
    Neuroimage; 2014 Jul; 95():48-60. PubMed ID: 24662578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensorimotor and cognitive involvement of the beta-gamma oscillation in the frontal N30 component of somatosensory evoked potentials.
    Cebolla AM; Cheron G
    Neuropsychologia; 2015 Dec; 79(Pt B):215-22. PubMed ID: 26002756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frontal phasic and oscillatory generators of the N30 somatosensory evoked potential.
    Cebolla AM; Palmero-Soler E; Dan B; Cheron G
    Neuroimage; 2011 Jan; 54(2):1297-306. PubMed ID: 20813188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Somatosensory input to non-primary motor areas is enhanced during preparation of cued contraterlateral finger sequence movements.
    Brown MJ; Staines WR
    Behav Brain Res; 2015 Jun; 286():166-74. PubMed ID: 25746454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pure phase-locking of beta/gamma oscillation contributes to the N30 frontal component of somatosensory evoked potentials.
    Cheron G; Cebolla AM; De Saedeleer C; Bengoetxea A; Leurs F; Leroy A; Dan B
    BMC Neurosci; 2007 Sep; 8():75. PubMed ID: 17877800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The selective gating of the N30 cortical component of the somatosensory evoked potentials of median nerve is different in the mesial and dorsolateral frontal cortex: evidence from intracerebral recordings.
    Kanovský P; Bares M; Rektor I
    Clin Neurophysiol; 2003 Jun; 114(6):981-91. PubMed ID: 12804666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Movement gating of beta/gamma oscillations involved in the N30 somatosensory evoked potential.
    Cebolla AM; De Saedeleer C; Bengoetxea A; Leurs F; Balestra C; d'Alcantara P; Palmero-Soler E; Dan B; Cheron G
    Hum Brain Mapp; 2009 May; 30(5):1568-79. PubMed ID: 18661507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anticipation of somatosensory and motor events increases centro-parietal functional coupling: an EEG coherence study.
    Babiloni C; Brancucci A; Vecchio F; Arendt-Nielsen L; Chen AC; Rossini PM
    Clin Neurophysiol; 2006 May; 117(5):1000-8. PubMed ID: 16516546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of continuous theta burst stimulation over left premotor cortex and right prefrontal cortex on modulating upper limb somatosensory input.
    Brown MJN; Staines WR
    Neuroimage; 2016 Feb; 127():97-109. PubMed ID: 26631817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N30 and the effect of explorative finger movements: a model of the contribution of the motor cortex to early somatosensory potentials.
    Waberski TD; Buchner H; Perkuhn M; Gobbelé R; Wagner M; Kücker W; Silny J
    Clin Neurophysiol; 1999 Sep; 110(9):1589-600. PubMed ID: 10479026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of repetitive transcranial magnetic stimulation applied over the premotor cortex on somatosensory-evoked potentials and regional cerebral blood flow.
    Urushihara R; Murase N; Rothwell JC; Harada M; Hosono Y; Asanuma K; Shimazu H; Nakamura K; Chikahisa S; Kitaoka K; Sei H; Morita Y; Kaji R
    Neuroimage; 2006 Jun; 31(2):699-709. PubMed ID: 16466934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topography of spatially enhanced human short-latency somatosensory evoked potentials.
    Rossini PM; Babiloni F; Babiloni C; Ambrosini A; Onorati P; Urbano A
    Neuroreport; 1997 Mar; 8(4):991-4. PubMed ID: 9141078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Somatosensory evoked potentials at rest and during movement in Parkinson's disease: evidence for a specific apomorphine effect on the frontal N30 wave.
    Cheron G; Piette T; Thiriaux A; Jacquy J; Godaux E
    Electroencephalogr Clin Neurophysiol; 1994 Nov; 92(6):491-501. PubMed ID: 7527767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mirror-neuron system recruitment by action observation: effects of focal brain damage on mu suppression.
    Frenkel-Toledo S; Bentin S; Perry A; Liebermann DG; Soroker N
    Neuroimage; 2014 Feb; 87():127-37. PubMed ID: 24140938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal brain dynamics in response to muscle stimulation.
    Niddam DM; Chen LF; Wu YT; Hsieh JC
    Neuroimage; 2005 Apr; 25(3):942-51. PubMed ID: 15808994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crossmodal Classification of Mu Rhythm Activity during Action Observation and Execution Suggests Specificity to Somatosensory Features of Actions.
    Coll MP; Press C; Hobson H; Catmur C; Bird G
    J Neurosci; 2017 Jun; 37(24):5936-5947. PubMed ID: 28559380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between frontal somatosensory-evoked potentials and motor planning.
    Legon W; Meehan SK; Staines WR
    Neuroreport; 2008 Jan; 19(1):87-91. PubMed ID: 18281899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proprioceptive information processing in schizophrenia.
    Arnfred SM
    Dan Med J; 2012 Mar; 59(3):B4421. PubMed ID: 22381098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-dominant hand movement facilitates the frontal N30 somatosensory evoked potential.
    Legon W; Dionne JK; Meehan SK; Staines WR
    BMC Neurosci; 2010 Sep; 11():112. PubMed ID: 20822535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential modulation of the short- and long-latency somatosensory evoked potentials in a forewarned reaction time task.
    Kida T; Nishihira Y; Wasaka T; Sakajiri Y; Tazoe T
    Clin Neurophysiol; 2004 Oct; 115(10):2223-30. PubMed ID: 15351362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.