These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 24662936)

  • 1. Density functional theory calculations of continuum lowering in strongly coupled plasmas.
    Vinko SM; Ciricosta O; Wark JS
    Nat Commun; 2014 Mar; 5():3533. PubMed ID: 24662936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas.
    Hu SX
    Phys Rev Lett; 2017 Aug; 119(6):065001. PubMed ID: 28949647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial ionization in dense plasmas: comparisons among average-atom density functional models.
    Murillo MS; Weisheit J; Hansen SB; Dharma-wardana MW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063113. PubMed ID: 23848795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of femtosecond collisional ionization rates in a solid-density aluminium plasma.
    Vinko SM; Ciricosta O; Preston TR; Rackstraw DS; Brown CR; Burian T; Chalupský J; Cho BI; Chung HK; Engelhorn K; Falcone RW; Fiokovinini R; Hájková V; Heimann PA; Juha L; Lee HJ; Lee RW; Messerschmidt M; Nagler B; Schlotter W; Turner JJ; Vysin L; Zastrau U; Wark JS
    Nat Commun; 2015 Mar; 6():6397. PubMed ID: 25731816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unified description of linear screening in dense plasmas.
    Stanton LG; Murillo MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033104. PubMed ID: 25871221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurements of continuum lowering in solid-density plasmas created from elements and compounds.
    Ciricosta O; Vinko SM; Barbrel B; Rackstraw DS; Preston TR; Burian T; Chalupský J; Cho BI; Chung HK; Dakovski GL; Engelhorn K; Hájková V; Heimann P; Holmes M; Juha L; Krzywinski J; Lee RW; Toleikis S; Turner JJ; Zastrau U; Wark JS
    Nat Commun; 2016 May; 7():11713. PubMed ID: 27210741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the intrinsic atomic physics behind x-ray absorption line shifts in warm dense silicon plasmas.
    Karasiev VV; Hu SX
    Phys Rev E; 2021 Mar; 103(3-1):033202. PubMed ID: 33862735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonideal effect of free electrons on ionization equilibrium and radiative property in dense plasmas.
    Zeng J; Li Y; Hou Y; Yuan J
    Phys Rev E; 2023 Mar; 107(3):L033201. PubMed ID: 37072979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validating Continuum Lowering Models via Multi-Wavelength Measurements of Integrated X-ray Emission.
    Kasim MF; Wark JS; Vinko SM
    Sci Rep; 2018 Apr; 8(1):6276. PubMed ID: 29674688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold charge state distributions in highly ionized, low-density beam plasmas.
    May MJ; Hansen SB; Scofield J; Schneider M; Wong K; Beiersdorfer P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046402. PubMed ID: 22181278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-principles equation of state and electronic properties of warm dense oxygen.
    Driver KP; Soubiran F; Zhang S; Militzer B
    J Chem Phys; 2015 Oct; 143(16):164507. PubMed ID: 26520527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of higher multipoles in field-induced continuum lowering in plasmas.
    Oks E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):057401. PubMed ID: 11415051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictions of x-ray scattering spectra for warm dense matter.
    Souza AN; Perkins DJ; Starrett CE; Saumon D; Hansen SB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023108. PubMed ID: 25353587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative ion-ion pair-potential model applied to molecular dynamics simulations of hot and dense plasmas: Al and Fe as examples.
    Hou Y; Yuan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016402. PubMed ID: 19257143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized hydrodynamics model for strongly coupled plasmas.
    Diaw A; Murillo MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013107. PubMed ID: 26274294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First principles molecular dynamics of dense plasmas.
    Surh MP; Barbee TW; Yang LH
    Phys Rev Lett; 2001 Jun; 86(26 Pt 1):5958-61. PubMed ID: 11415403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-dependent quantum pair potentials and their application to dense partially ionized hydrogen plasmas.
    Filinov AV; Golubnychiy VO; Bonitz M; Ebeling W; Dufty JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046411. PubMed ID: 15600534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic and optical properties of warm dense copper.
    Miloshevsky G; Hassanein A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033109. PubMed ID: 26465577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic theory for ion structure and stopping power in quantum plasmas.
    Shukla PK; Akbari-Moghanjoughi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043106. PubMed ID: 23679529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hugoniot measurements of double-shocked precompressed dense xenon plasmas.
    Zheng J; Chen QF; Gu YJ; Chen ZY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066406. PubMed ID: 23368058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.