These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 24662974)
1. Mechanisms relevant to the enhanced virulence of a dihydroxynaphthalene-melanin metabolically engineered entomopathogen. Tseng MN; Chung CL; Tzean SS PLoS One; 2014; 9(3):e90473. PubMed ID: 24662974 [TBL] [Abstract][Full Text] [Related]
2. Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes. Tseng MN; Chung PC; Tzean SS Appl Environ Microbiol; 2011 Jul; 77(13):4508-19. PubMed ID: 21571888 [TBL] [Abstract][Full Text] [Related]
3. Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fang W; Pava-ripoll M; Wang S; St Leger R Fungal Genet Biol; 2009 Mar; 46(3):277-85. PubMed ID: 19124083 [TBL] [Abstract][Full Text] [Related]
4. A regulator of a G protein signalling (RGS) gene, cag8, from the insect-pathogenic fungus Metarhizium anisopliae is involved in conidiation, virulence and hydrophobin synthesis. Fang W; Pei Y; Bidochka MJ Microbiology (Reading); 2007 Apr; 153(Pt 4):1017-1025. PubMed ID: 17379711 [TBL] [Abstract][Full Text] [Related]
5. Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and virulence. Zhang J; Jiang H; Du Y; Keyhani NO; Xia Y; Jin K PLoS Pathog; 2019 Aug; 15(8):e1007964. PubMed ID: 31461507 [TBL] [Abstract][Full Text] [Related]
6. Screening of high toxic Metarhizium strain against Plutella xylostella and its marking with green fluorescent protein. Cui Q; Zhang Y; Zang Y; Nong X; Wang G; Zhang Z World J Microbiol Biotechnol; 2014 Oct; 30(10):2767-73. PubMed ID: 25037866 [TBL] [Abstract][Full Text] [Related]
7. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum. Wei Q; Du Y; Jin K; Xia Y Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8571-8584. PubMed ID: 29079863 [TBL] [Abstract][Full Text] [Related]
8. Endochitinase CHI2 of the biocontrol fungus Metarhizium anisopliae affects its virulence toward the cotton stainer bug Dysdercus peruvianus. Boldo JT; Junges A; do Amaral KB; Staats CC; Vainstein MH; Schrank A Curr Genet; 2009 Oct; 55(5):551-60. PubMed ID: 19649636 [TBL] [Abstract][Full Text] [Related]
9. Proteomic Analysis of a Hypervirulent Mutant of the Insect-Pathogenic Fungus Metarhizium anisopliae Reveals Changes in Pathogenicity and Terpenoid Pathways. Huang W; Huang P; Yü D; Li C; Huang S; Qi P; Huang S; Keyhani NO; Huang Z Microbiol Spectr; 2022 Dec; 10(6):e0076022. PubMed ID: 36314906 [TBL] [Abstract][Full Text] [Related]
10. Transfection of entomopathogenic Guo J; Zhang P; Wu N; Liu W; Liu Y; Jin H; Francis F; Wang X Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2320572121. PubMed ID: 38885380 [TBL] [Abstract][Full Text] [Related]
11. DNA methyltransferases contribute to the fungal development, stress tolerance and virulence of the entomopathogenic fungus Metarhizium robertsii. Wang Y; Wang T; Qiao L; Zhu J; Fan J; Zhang T; Wang ZX; Li W; Chen A; Huang B Appl Microbiol Biotechnol; 2017 May; 101(10):4215-4226. PubMed ID: 28238081 [TBL] [Abstract][Full Text] [Related]
12. MOS1 osmosensor of Metarhizium anisopliae is required for adaptation to insect host hemolymph. Wang C; Duan Z; St Leger RJ Eukaryot Cell; 2008 Feb; 7(2):302-9. PubMed ID: 18055914 [TBL] [Abstract][Full Text] [Related]
13. Screening of Metarhizium anisopliae UV-induced mutants for faster growth yields a hyper-virulent isolate with greater UV and thermal tolerances. Zhao J; Yao R; Wei Y; Huang S; Keyhani NO; Huang Z Appl Microbiol Biotechnol; 2016 Nov; 100(21):9217-9228. PubMed ID: 27521024 [TBL] [Abstract][Full Text] [Related]
14. Contributions of β-tubulin to cellular morphology, sporulation and virulence in the insect-fungal pathogen, Metarhizium acridum. Zhang J; Jin K; Xia Y Fungal Genet Biol; 2017 Jun; 103():16-24. PubMed ID: 28336393 [TBL] [Abstract][Full Text] [Related]
15. Biosynthesis of non-melanin pigment by a divergent polyketide synthase in Metarhizium robertsii. Chen Y; Feng P; Shang Y; Xu YJ; Wang C Fungal Genet Biol; 2015 Aug; 81():142-9. PubMed ID: 25445307 [TBL] [Abstract][Full Text] [Related]
16. The divergence of DHN-derived melanin pathways in Metarhizium robertsii. Xie L; Liu Y; Zhang Y; Chen K; Yue Q; Wang C; Dun B; Xu Y; Zhang L World J Microbiol Biotechnol; 2024 Sep; 40(10):323. PubMed ID: 39292329 [TBL] [Abstract][Full Text] [Related]
17. Integration of an insecticidal scorpion toxin (BjαIT) gene into Metarhizium acridum enhances fungal virulence towards Locusta migratoria manilensis. Peng G; Xia Y Pest Manag Sci; 2015 Jan; 71(1):58-64. PubMed ID: 25488590 [TBL] [Abstract][Full Text] [Related]
18. Directed evolution of a filamentous fungus for thermotolerance. de Crecy E; Jaronski S; Lyons B; Lyons TJ; Keyhani NO BMC Biotechnol; 2009 Aug; 9():74. PubMed ID: 19709419 [TBL] [Abstract][Full Text] [Related]
19. Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Rangel DE; Alston DG; Roberts DW Mycol Res; 2008 Nov; 112(Pt 11):1355-61. PubMed ID: 18947989 [TBL] [Abstract][Full Text] [Related]
20. MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum. Jin K; Han L; Xia Y J Invertebr Pathol; 2014 Jan; 115():68-75. PubMed ID: 24184951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]