BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

759 related articles for article (PubMed ID: 24663005)

  • 1. Do American goldfinches see their world like passive prey foragers? A study on visual fields, retinal topography, and sensitivity of photoreceptors.
    Baumhardt PE; Moore BA; Doppler M; Fernández-Juricic E
    Brain Behav Evol; 2014; 83(3):181-98. PubMed ID: 24663005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoreceptor types, visual pigments, and topographic specializations in the retinas of hydrophiid sea snakes.
    Hart NS; Coimbra JP; Collin SP; Westhoff G
    J Comp Neurol; 2012 Apr; 520(6):1246-61. PubMed ID: 22020556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing the terrain hypothesis: Canada geese see their world laterally and obliquely.
    Fernández-Juricic E; Moore BA; Doppler M; Freeman J; Blackwell BF; Lima SL; DeVault TL
    Brain Behav Evol; 2011; 77(3):147-58. PubMed ID: 21546769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oblique color vision in an open-habitat bird: spectral sensitivity, photoreceptor distribution and behavioral implications.
    Moore BA; Baumhardt P; Doppler M; Randolet J; Blackwell BF; DeVault TL; Loew ER; Fernández-Juricic E
    J Exp Biol; 2012 Oct; 215(Pt 19):3442-52. PubMed ID: 22956248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoreceptor and ganglion cell topographies correlate with information convergence and high acuity regions in the adult pigeon (Columba livia) retina.
    Querubin A; Lee HR; Provis JM; O'Brien KM
    J Comp Neurol; 2009 Dec; 517(5):711-22. PubMed ID: 19827162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topography of ganglion cells and photoreceptors in the sheep retina.
    Shinozaki A; Hosaka Y; Imagawa T; Uehara M
    J Comp Neurol; 2010 Jun; 518(12):2305-15. PubMed ID: 20437529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal characteristics of the ornate dragon lizard, Ctenophorus ornatus.
    Barbour HR; Archer MA; Hart NS; Thomas N; Dunlop SA; Beazley LD; Shand J
    J Comp Neurol; 2002 Sep; 450(4):334-44. PubMed ID: 12209847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vision in avian emberizid foragers: maximizing both binocular vision and fronto-lateral visual acuity.
    Moore BA; Pita D; Tyrrell LP; Fernández-Juricic E
    J Exp Biol; 2015 May; 218(Pt 9):1347-58. PubMed ID: 25750415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual pigments, cone oil droplets and ocular media in four species of estrildid finch.
    Hart NS; Partridge JC; Bennett AT; Cuthill IC
    J Comp Physiol A; 2000; 186(7-8):681-94. PubMed ID: 11016784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal development of West Australian dhufish, Glaucosoma hebraicum.
    Shand J; Archer MA; Thomas N; Cleary J
    Vis Neurosci; 2001; 18(5):711-24. PubMed ID: 11925007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual pigments, cone oil droplets, ocular media and predicted spectral sensitivity in the domestic turkey (Meleagris gallopavo).
    Hart NS; Partridge JC; Cuthill IC
    Vision Res; 1999 Oct; 39(20):3321-8. PubMed ID: 10615498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between visual resolution and cone spacing in the human fovea.
    Rossi EA; Roorda A
    Nat Neurosci; 2010 Feb; 13(2):156-7. PubMed ID: 20023654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreceptor topography and spectral sensitivity in the common brushtail possum (Trichosurus vulpecula).
    Vlahos LM; Knott B; Valter K; Hemmi JM
    J Comp Neurol; 2014 Oct; 522(15):3423-36. PubMed ID: 24737644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral sensitivities of the seahorses Hippocampus subelongatus and Hippocampus barbouri and the pipefish Stigmatopora argus.
    Mosk V; Thomas N; Hart NS; Partridge JC; Beazley LD; Shand J
    Vis Neurosci; 2007; 24(3):345-54. PubMed ID: 17822575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological and behavioral limit of visual resolution in temperate (Hippocampus abdominalis) and tropical (Hippocampus taeniopterus) seahorses.
    Lee HR; O'Brien KM
    Vis Neurosci; 2011 Jul; 28(4):351-60. PubMed ID: 21838936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does retinal configuration make the head and eyes of foveate birds move?
    Moore BA; Tyrrell LP; Pita D; Bininda-Emonds OR; Fernández-Juricic E
    Sci Rep; 2017 Jan; 7():38406. PubMed ID: 28079062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vision in the southern hemisphere lamprey Mordacia mordax: spatial distribution, spectral absorption characteristics, and optical sensitivity of a single class of retinal photoreceptor.
    Collin SP; Hart NS; Wallace KM; Shand J; Potter IC
    Vis Neurosci; 2004; 21(5):765-73. PubMed ID: 15683562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seven retinal specializations in the tubular eye of the deep-sea pearleye, Scopelarchus michaelsarsi: a case study in visual optimization.
    Collin SP; Hoskins RV; Partridge JC
    Brain Behav Evol; 1998; 51(6):291-314. PubMed ID: 9623907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual fields, eye movements, and scanning behavior of a sit-and-wait predator, the black phoebe (Sayornis nigricans).
    Gall MD; Fernández-Juricic E
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Jan; 196(1):15-22. PubMed ID: 19921207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.).
    Hart NS; Partridge JC; Cuthill IC; Bennett AT
    J Comp Physiol A; 2000 Apr; 186(4):375-87. PubMed ID: 10798725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.