These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24663121)

  • 1. Simulation of diffusion in a crowded environment.
    Polanowski P; Sikorski A
    Soft Matter; 2014 May; 10(20):3597-607. PubMed ID: 24663121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion in a crowded environment: the influence of obstacles' size and shape and model of transport.
    Polanowski P; Sikorski A
    J Mol Model; 2019 Mar; 25(3):84. PubMed ID: 30826982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analytical correlated random walk model and its application to understand subdiffusion in crowded environment.
    Hasnain S; Bandyopadhyay P
    J Chem Phys; 2015 Sep; 143(11):114104. PubMed ID: 26395684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of Molecular Transport in Systems Containing Mobile Obstacles.
    Polanowski P; Sikorski A
    J Phys Chem B; 2016 Aug; 120(30):7529-37. PubMed ID: 27387448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular transport in systems containing binding obstacles.
    Polanowski P; Sikorski A
    Soft Matter; 2019 Dec; 15(48):10045-10054. PubMed ID: 31769460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of different models of motion in a crowded environment: a Monte Carlo study.
    Polanowski P; Sikorski A
    Soft Matter; 2017 Feb; 13(8):1693-1701. PubMed ID: 28154876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How proteins squeeze through polymer networks: a Cartesian lattice study.
    Wedemeier A; Merlitz H; Wu CX; Langowski J
    J Chem Phys; 2009 Aug; 131(6):064905. PubMed ID: 19691409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Run-and-tumble dynamics in a crowded environment: persistent exclusion process for swimmers.
    Soto R; Golestanian R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012706. PubMed ID: 24580256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes.
    Berry H; Chaté H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022708. PubMed ID: 25353510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculating the Fickian diffusivity for a lattice-based random walk with agents and obstacles of different shapes and sizes.
    Ellery AJ; Baker RE; Simpson MJ
    Phys Biol; 2015 Nov; 12(6):066010. PubMed ID: 26599468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-universal tracer diffusion in crowded media of non-inert obstacles.
    Ghosh SK; Cherstvy AG; Metzler R
    Phys Chem Chem Phys; 2015 Jan; 17(3):1847-58. PubMed ID: 25474476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral diffusion of proteins in the plasma membrane: spatial tessellation and percolation theory.
    Sung BJ; Yethiraj A
    J Phys Chem B; 2008 Jan; 112(1):143-9. PubMed ID: 18069820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous diffusion of oligomerized transmembrane proteins.
    Schmidt U; Weiss M
    J Chem Phys; 2011 Apr; 134(16):165101. PubMed ID: 21528980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamically enforced entropic Brownian pump.
    Ai BQ; He YF; Li FG; Zhong WR
    J Chem Phys; 2013 Apr; 138(15):154107. PubMed ID: 23614412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles.
    Stefferson MW; Norris SL; Vernerey FJ; Betterton MD; Hough LE
    Phys Biol; 2017 Jun; 14(4):045008. PubMed ID: 28597848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collective intermolecular motions dominate the picosecond dynamics of short polymer chains.
    Morhenn H; Busch S; Meyer H; Richter D; Petry W; Unruh T
    Phys Rev Lett; 2013 Oct; 111(17):173003. PubMed ID: 24206485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative jump motions of jammed particles in a one-dimensional periodic potential.
    Sakaguchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):062103. PubMed ID: 20365206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges in determining anomalous diffusion in crowded fluids.
    Hellmann M; Klafter J; Heermann DW; Weiss M
    J Phys Condens Matter; 2011 Jun; 23(23):234113. PubMed ID: 21613702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology.
    Marquez-Lago TT; Leier A; Burrage K
    IET Syst Biol; 2012 Aug; 6(4):134-42. PubMed ID: 23039694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.