BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24663174)

  • 1. Body composition and feed intake of reproducing and growing mice divergently selected for heat loss.
    Bhatnagar AS; Nielsen MK
    J Anim Sci; 2014 May; 92(5):1886-94. PubMed ID: 24663174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle biological efficiency of mice divergently selected for heat loss.
    Bhatnagar AS; Nielsen MK
    J Anim Sci; 2014 Aug; 92(8):3237-48. PubMed ID: 24902598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in mitochondrial efficiency between lines of mice divergently selected for heat loss.
    McDonald JM; Ramsey JJ; Miner JL; Nielsen MK
    J Anim Sci; 2009 Oct; 87(10):3105-13. PubMed ID: 19542504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of feed energy costs of maintenance, lean deposition, and fat deposition in three lines of mice selected for heat loss.
    Eggert DL; Nielsen MK
    J Anim Sci; 2006 Feb; 84(2):276-82. PubMed ID: 16424253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lifetime reproductive performance and survival analysis of mice divergently selected for heat loss.
    Bhatnagar AS; Nielsen MK
    J Anim Sci; 2014 Feb; 92(2):477-84. PubMed ID: 24664557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlated responses in maternal performance following divergent selection for heat loss in mice.
    McDonald JM; Nielsen MK
    J Anim Sci; 2006 Feb; 84(2):300-4. PubMed ID: 16424256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of mouse lines divergently selected for heat loss when exposed to different environmental temperatures. II. Feed intake, growth, fatness, and body organs.
    Kgwatalala PM; Nielsen MK
    J Anim Sci; 2004 Oct; 82(10):2884-91. PubMed ID: 15484938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergent selection for heat loss in mice: II. Correlated responses in feed intake, body mass, body composition, and number born through fifteen generations.
    Nielsen MK; Freking BA; Jones LD; Nelson SM; Vorderstrasse TL; Hussey BA
    J Anim Sci; 1997 Jun; 75(6):1469-76. PubMed ID: 9250506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotor activity and body temperature in selected mouse lines differing greatly in feed intake.
    Sojka PA; Griess RS; Nielsen MK
    J Anim Sci; 2013 Aug; 91(8):3557-63. PubMed ID: 23739793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlated responses in sow appetite, residual feed intake, body composition, and reproduction after divergent selection for residual feed intake in the growing pig.
    Gilbert H; Bidanel JP; Billon Y; Lagant H; Guillouet P; Sellier P; Noblet J; Hermesch S
    J Anim Sci; 2012 Apr; 90(4):1097-108. PubMed ID: 22100596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy utilization in pigs selected for high and low residual feed intake.
    Barea R; Dubois S; Gilbert H; Sellier P; van Milgen J; Noblet J
    J Anim Sci; 2010 Jun; 88(6):2062-72. PubMed ID: 20154162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renewed selection for heat loss in mice: direct responses and correlated responses in feed intake, body weight, litter size, and conception rate.
    McDonald JM; Nielsen MK
    J Anim Sci; 2007 Mar; 85(3):658-66. PubMed ID: 17060417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatic mitochondrial efficiency in lines of mice differing in feed intake.
    Murphy TW; McDonald JM; Nielsen MK
    J Anim Sci; 2013 May; 91(5):2077-82. PubMed ID: 23463560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ad libitum and restricted feed intake on growth performance and body composition of Yorkshire pigs selected for reduced residual feed intake.
    Boddicker N; Gabler NK; Spurlock ME; Nettleton D; Dekkers JC
    J Anim Sci; 2011 Jan; 89(1):40-51. PubMed ID: 20833771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits.
    Gilbert H; Bidanel JP; Gruand J; Caritez JC; Billon Y; Guillouet P; Lagant H; Noblet J; Sellier P
    J Anim Sci; 2007 Dec; 85(12):3182-8. PubMed ID: 17785600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotor activity, core body temperature, and circadian rhythms in mice selected for high or low heat loss.
    Mousel MR; Stroup WW; Nielsen MK
    J Anim Sci; 2001 Apr; 79(4):861-8. PubMed ID: 11325190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships between postweaning residual feed intake in heifers and forage use, body composition, feeding behavior, physical activity, and heart rate of pregnant beef females.
    Hafla AN; Carstens GE; Forbes TD; Tedeschi LO; Bailey JC; Walter JT; Johnson JR
    J Anim Sci; 2013 Nov; 91(11):5353-65. PubMed ID: 23989881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of selection for decreased residual feed intake on composition and quality of fresh pork.
    Smith RM; Gabler NK; Young JM; Cai W; Boddicker NJ; Anderson MJ; Huff-Lonergan E; Dekkers JC; Lonergan SM
    J Anim Sci; 2011 Jan; 89(1):192-200. PubMed ID: 20817860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of thermal heat stress on energy utilization in two lines of pigs divergently selected for residual feed intake.
    Renaudeau D; Frances G; Dubois S; Gilbert H; Noblet J
    J Anim Sci; 2013 Mar; 91(3):1162-75. PubMed ID: 23296816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maternal exposure to Western diet affects adult body composition and voluntary wheel running in a genotype-specific manner in mice.
    Hiramatsu L; Kay JC; Thompson Z; Singleton JM; Claghorn GC; Albuquerque RL; Ho B; Ho B; Sanchez G; Garland T
    Physiol Behav; 2017 Oct; 179():235-245. PubMed ID: 28625550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.