These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24663362)

  • 1. Digitally reconfigurable complex two-dimensional dual-lattice structure by optical phase engineering.
    Kumar M; Joseph J
    Appl Opt; 2014 Mar; 53(7):1333-8. PubMed ID: 24663362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating a hexagonal lattice wave field with a gradient basis structure.
    Kumar M; Joseph J
    Opt Lett; 2014 Apr; 39(8):2459-62. PubMed ID: 24979018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digitally tunable holographic lithography using a spatial light modulator as a programmable phase mask.
    Lutkenhaus J; George D; Moazzezi M; Philipose U; Lin Y
    Opt Express; 2013 Nov; 21(22):26227-35. PubMed ID: 24216847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embedding a nondiffracting defect site in helical lattice wave-field by optical phase engineering.
    Kumar M; Joseph J
    Appl Opt; 2013 Aug; 52(23):5653-8. PubMed ID: 23938414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-step optical realization of bio-inspired dual-periodic motheye and gradient-index-array photonic structures.
    Behera S; Joseph J
    Opt Lett; 2016 Aug; 41(15):3579-82. PubMed ID: 27472623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable complex photonic chiral lattices by reconfigurable optical phase engineering.
    Xavier J; Joseph J
    Opt Lett; 2011 Feb; 36(3):403-5. PubMed ID: 21283204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holographic fabrication of functionally graded photonic lattices through spatially specified phase patterns.
    Lutkenhaus J; George D; Arigong B; Zhang H; Philipose U; Lin Y
    Appl Opt; 2014 Apr; 53(12):2548-55. PubMed ID: 24787580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collapse and revival of the matter wave field of a Bose-Einstein condensate.
    Greiner M; Mandel O; Hänsch TW; Bloch I
    Nature; 2002 Sep; 419(6902):51-4. PubMed ID: 12214228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous direct holographic fabrication of photonic cavity and graded photonic lattice with dual periodicity, dual basis, and dual symmetry.
    Lowell D; Lutkenhaus J; George D; Philipose U; Chen B; Lin Y
    Opt Express; 2017 Jun; 25(13):14444-14452. PubMed ID: 28789030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of reconfigurable optical traps for microparticles spatial manipulation through dynamic split lens inspired light structures.
    Lizana A; Zhang H; Turpin A; Van Eeckhout A; Torres-Ruiz FA; Vargas A; Ramirez C; Pi F; Campos J
    Sci Rep; 2018 Jul; 8(1):11263. PubMed ID: 30050141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-range, complex spatial light modulator for real-time holography.
    Reichelt S; Häussler R; Fütterer G; Leister N; Kato H; Usukura N; Kanbayashi Y
    Opt Lett; 2012 Jun; 37(11):1955-7. PubMed ID: 22660085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconfigurable optical interconnects by a combined computer-generated hologram and spatial light modulator method.
    Morris JE; Feldman MR
    Appl Opt; 1994 Jun; 33(17):3683-94. PubMed ID: 20885759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for single-shot fabrication of chiral woodpile photonic structures using phase-controlled interference lithography.
    Sarkar S; Samanta K; Joseph J
    Opt Express; 2020 Feb; 28(3):4347-4361. PubMed ID: 32122089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave front control with SLM and simulation of light wave diffraction.
    Gongjian Z; Man Z; Yang Z
    Opt Express; 2018 Dec; 26(26):33543-33564. PubMed ID: 30650788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encoding complex fields by using a phase-only optical element.
    Mendoza-Yero O; Mínguez-Vega G; Lancis J
    Opt Lett; 2014 Apr; 39(7):1740-3. PubMed ID: 24686593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anamorphic optical transformation of an amplitude spatial light modulator to a complex spatial light modulator with square pixels [invited].
    Kim H; Hwang CY; Kim KS; Roh J; Moon W; Kim S; Lee BR; Oh S; Hahn J
    Appl Opt; 2014 Sep; 53(27):G139-46. PubMed ID: 25322122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2D beam shaping via 1D spatial light modulator using static phase masks.
    Whitehead JEM; Ryou A; Colburn S; Zhelyeznyakov M; Majumdar A
    Opt Lett; 2021 May; 46(10):2280-2283. PubMed ID: 33988564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional optically induced reconfigurable photorefractive nonlinear photonic lattices.
    Xavier J; Rose P; Terhalle B; Joseph J; Denz C
    Opt Lett; 2009 Sep; 34(17):2625-7. PubMed ID: 19724512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial cross modulation method using a random diffuser and phase-only spatial light modulator for constructing arbitrary complex fields.
    Shibukawa A; Okamoto A; Takabayashi M; Tomita A
    Opt Express; 2014 Feb; 22(4):3968-82. PubMed ID: 24663718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent transport of neutral atoms in spin-dependent optical lattice potentials.
    Mandel O; Greiner M; Widera A; Rom T; Hänsch TW; Bloch I
    Phys Rev Lett; 2003 Jul; 91(1):010407. PubMed ID: 12906526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.