These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24663394)

  • 1. Insulated conducting cantilevered nanotips and two-chamber recording system for high resolution ion sensing AFM.
    Meckes B; Arce FT; Connelly LS; Lal R
    Sci Rep; 2014 Mar; 4():4454. PubMed ID: 24663394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene nanopore support system for simultaneous high-resolution AFM imaging and conductance measurements.
    Connelly LS; Meckes B; Larkin J; Gillman AL; Wanunu M; Lal R
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5290-6. PubMed ID: 24581087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: lab-on-a-chip system for lipid membranes and ion channels.
    Quist AP; Chand A; Ramachandran S; Daraio C; Jin S; Lal R
    Langmuir; 2007 Jan; 23(3):1375-80. PubMed ID: 17241061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new ion sensing deep atomic force microscope.
    Drake B; Randall C; Bridges D; Hansma PK
    Rev Sci Instrum; 2014 Aug; 85(8):083706. PubMed ID: 25173275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope.
    Aramesh M; Forró C; Dorwling-Carter L; Lüchtefeld I; Schlotter T; Ihle SJ; Shorubalko I; Hosseini V; Momotenko D; Zambelli T; Klotzsch E; Vörös J
    Nat Nanotechnol; 2019 Aug; 14(8):791-798. PubMed ID: 31308500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-tracked scanning ion conductance microscopy: A novel imaging technique for measuring topography-correlated transmembrane ion transport through porous substrates.
    Venkatesh V; Heinemann C; Sundaresan VB
    Micron; 2019 May; 120():57-65. PubMed ID: 30776683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents.
    Baaken G; Sondermann M; Schlemmer C; Rühe J; Behrends JC
    Lab Chip; 2008 Jun; 8(6):938-44. PubMed ID: 18497915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging molecular structure of channels and receptors with an atomic force microscope.
    Lal R
    Scanning Microsc Suppl; 1996; 10():81-95; discussion 95-6. PubMed ID: 9601532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative imaging of ion transport through single nanopores by high-resolution scanning electrochemical microscopy.
    Shen M; Ishimatsu R; Kim J; Amemiya S
    J Am Chem Soc; 2012 Jun; 134(24):9856-9. PubMed ID: 22655578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational modeling of ion transport through nanopores.
    Modi N; Winterhalter M; Kleinekathöfer U
    Nanoscale; 2012 Oct; 4(20):6166-80. PubMed ID: 23198289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid bilayer-atomic force microscopy combined platform records simultaneous electrical and topological changes of the TRP channel polycystin-2 (TRPP2).
    Lal S; Scarinci N; Perez PL; Cantero MDR; Cantiello HF
    PLoS One; 2018; 13(8):e0202029. PubMed ID: 30133487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Scanning Ion Conductance Microscopy and Atomic Force Microscopy with Microchanneled Cantilevers.
    Ossola D; Dorwling-Carter L; Dermutz H; Behr P; Vörös J; Zambelli T
    Phys Rev Lett; 2015 Dec; 115(23):238103. PubMed ID: 26684144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dehydration and ionic conductance quantization in nanopores.
    Zwolak M; Wilson J; Di Ventra M
    J Phys Condens Matter; 2010 Nov; 22(45):454126. PubMed ID: 21152075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle.
    Obataya I; Nakamura C; Han S; Nakamura N; Miyake J
    Nano Lett; 2005 Jan; 5(1):27-30. PubMed ID: 15792407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.
    Smirnov W; Kriele A; Hoffmann R; Sillero E; Hees J; Williams OA; Yang N; Kranz C; Nebel CE
    Anal Chem; 2011 Jun; 83(12):4936-41. PubMed ID: 21534601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pipette modulation and imaging distances on ion currents measured with scanning ion conductance microscopy (SICM).
    Chen CC; Baker LA
    Analyst; 2011 Jan; 136(1):90-7. PubMed ID: 21103593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The scanning ion-conductance microscope.
    Hansma PK; Drake B; Marti O; Gould SA; Prater CB
    Science; 1989 Feb; 243(4891):641-3. PubMed ID: 2464851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes.
    Zeng Z; Ai Y; Qian S
    Phys Chem Chem Phys; 2014 Feb; 16(6):2465-74. PubMed ID: 24358472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractal properties of cell surface structures: A view from AFM.
    Bitler A; Dover RS; Shai Y
    Semin Cell Dev Biol; 2018 Jan; 73():64-70. PubMed ID: 28760392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.