These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 24663413)

  • 1. Large aperture at low cost three-dimensional time-of-flight range sensor using scanning micromirrors and synchronous detector switching.
    Bogatscher S; Streck A; Fox M; Meinzer S; Heussner N; Stork W
    Appl Opt; 2014 Mar; 53(8):1570-82. PubMed ID: 24663413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FR4-Based Electromagnetic Scanning Micromirror Integrated with Angle Sensor.
    Lei H; Wen Q; Yu F; Zhou Y; Wen Z
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Holographic aperture ladar.
    Duncan BD; Dierking MP
    Appl Opt; 2009 Feb; 48(6):1168-77. PubMed ID: 23567578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-MEMS Lidar Using Hybrid Optical Architecture with Digital Micromirror Devices and a 2D-MEMS Mirror.
    Kang E; Choi H; Hellman B; Rodriguez J; Smith B; Deng X; Liu P; Lee TL; Evans E; Hong Y; Guan J; Luo C; Takashima Y
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coded aperture design in mismatched compressive spectral imaging.
    Galvis L; Arguello H; Arce GR
    Appl Opt; 2015 Nov; 54(33):9875-82. PubMed ID: 26836551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Far-field imaging beyond diffraction limit using single sensor in combination with a resonant aperture.
    Li L; Li F; Cui TJ; Yao K
    Opt Express; 2015 Jan; 23(1):401-12. PubMed ID: 25835685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 2D MEMS mirror with sidewall electrodes applied for confocal MACROscope imaging.
    Bai Y; Pallapa M; Chen A; Constantinou P; Damaskinos S; Wilson BC; Yeow JT
    J Microsc; 2012 Feb; 245(2):210-20. PubMed ID: 22092486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast laser beam steering into multiple diffraction orders with a single digital micromirror device for time-of-flight lidar.
    Rodriguez J; Smith B; Hellman B; Takashima Y
    Appl Opt; 2020 Aug; 59(22):G239-G248. PubMed ID: 32749339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting.
    McCarthy A; Collins RJ; Krichel NJ; Fernández V; Wallace AM; Buller GS
    Appl Opt; 2009 Nov; 48(32):6241-51. PubMed ID: 19904323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional analysis by a microlens-array confocal arrangement.
    Tiziani HJ; Uhde HM
    Appl Opt; 1994 Feb; 33(4):567-72. PubMed ID: 20862050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An implementation method based on ERS imaging mode for sun sensor with 1 kHz update rate and 1″ precision level.
    Wei M; Xing F; You Z
    Opt Express; 2013 Dec; 21(26):32524-33. PubMed ID: 24514846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing the effective aperture of a detector and enlarging the receiving field of view in a 3D imaging lidar system through hexagonal prism beam splitting.
    Lee X; Wang X; Cui T; Wang C; Li Y; Li H; Wang Q
    Opt Express; 2016 Jul; 24(14):15222-31. PubMed ID: 27410800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber optic bundle array wide field-of-view optical receiver for free space optical communications.
    Hahn DV; Brown DM; Rolander NW; Sluz JE; Venkat R
    Opt Lett; 2010 Nov; 35(21):3559-61. PubMed ID: 21042349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state 3D imaging using a 1nJ/100ps laser diode transmitter and a single photon receiver matrix.
    Jahromi S; Jansson JP; Kostamovaara J
    Opt Express; 2016 Sep; 24(19):21619-32. PubMed ID: 27661900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstrated resolution enhancement capability of a stripmap holographic aperture ladar system.
    Venable SM; Duncan BD; Dierking MP; Rabb DJ
    Appl Opt; 2012 Aug; 51(22):5531-42. PubMed ID: 22859045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental implementation of fiber optic bundle array wide FOV free space optical communications receiver.
    Brown AM; Hahn DV; Brown DM; Rolander NW; Bair CH; Sluz JE
    Appl Opt; 2012 Jun; 51(18):3995-4002. PubMed ID: 22722273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single chip lidar with discrete beam steering by digital micromirror device.
    Smith B; Hellman B; Gin A; Espinoza A; Takashima Y
    Opt Express; 2017 Jun; 25(13):14732-14745. PubMed ID: 28789057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monostatic all-fiber scanning LADAR system.
    Leach JH; Chinn SR; Goldberg L
    Appl Opt; 2015 Nov; 54(33):9752-7. PubMed ID: 26836533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Line-scanning laser scattering system for fast defect inspection of a large aperture surface.
    Dong J
    Appl Opt; 2017 Sep; 56(25):7089-7098. PubMed ID: 29047968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing tilt range of electrostatic torsional micromirrors using robust adaptive critic-based neurofuzzy control.
    Malmir H; Salarieh H
    ISA Trans; 2014 Sep; 53(5):1592-602. PubMed ID: 24957275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.