These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24663472)

  • 41. Spatial Heterodyne Raman Spectrometer (SHRS) for In Situ Chemical Sensing Using Sapphire and Silica Optical Fiber Raman Probes.
    Ottaway JM; Allen A; Waldron A; Paul PH; Angel SM; Carter JC
    Appl Spectrosc; 2019 Oct; 73(10):1160-1171. PubMed ID: 31397584
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diagnosis of modal and chromatic dispersions for the LP
    Shibata N; Watanabe K; Ohashi M; Maruyama R; Aikawa K
    Opt Lett; 2020 Sep; 45(17):4750-4753. PubMed ID: 32870848
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-arm three-wave interferometer for measuring dispersion of short lengths of fiber.
    Galle MA; Mohammed WS; Qian L; Smith PW
    Opt Express; 2007 Dec; 15(25):16896-908. PubMed ID: 19550980
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interferometric technique for the measurement of photonic band structure in colloidal crystals.
    Tarhan II; Zinkin MP; Watson GH
    Opt Lett; 1995 Jul; 20(14):1571-3. PubMed ID: 19862086
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wavelength-dependent orientation of the principal axes of photonic crystal fibers measured by windowed Fourier-transform spectral interferometry.
    Horváth M; Nagyillés BG; Grósz T; Kovács AP
    Opt Express; 2020 Jan; 28(2):2156-2165. PubMed ID: 32121911
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dispersion of square solid-core photonic bandgap fibers.
    Ni Y; Lei Z; Shu J; Jiangde P
    Opt Express; 2004 Jun; 12(13):2825-30. PubMed ID: 19483795
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion.
    Klimczak M; Siwicki B; Skibiński P; Pysz D; Stępień R; Heidt A; Radzewicz C; Buczyński R
    Opt Express; 2014 Jul; 22(15):18824-32. PubMed ID: 25089500
    [TBL] [Abstract][Full Text] [Related]  

  • 48. All-solid microstructured fiber with flat normal chromatic dispersion.
    Martynkien T; Pysz D; Stępień R; Buczyński R
    Opt Lett; 2014 Apr; 39(8):2342-5. PubMed ID: 24978988
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reliable chromatic dispersion measurement method for installed optical fibers.
    Zong L
    Appl Opt; 2015 Sep; 54(26):7973-7. PubMed ID: 26368972
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measurement of birefringence of nematic liquid crystal material by multiple-wavelength interferometry using nearly common-path single-stage Mach-Zehnder interferometer.
    Inam M; Srivastava V; Mehta DS
    Appl Opt; 2013 Nov; 52(33):8067-72. PubMed ID: 24513759
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum.
    Demmler S; Rothhardt J; Heidt AM; Hartung A; Rohwer EG; Bartelt H; Limpert J; Tünnermann A
    Opt Express; 2011 Oct; 19(21):20151-8. PubMed ID: 21997026
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photosensitive, all-glass AgPO3/silicaphotonic bandgap fiber.
    Konidakis I; Zito G; Pissadakis S
    Opt Lett; 2012 Jul; 37(13):2499-501. PubMed ID: 22743434
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation on single taper-based all-solid photonic bandgap fiber modal interferometers.
    Li J; Geng M; Sun LP; Fan P; Liu B; Guan BO
    Opt Express; 2016 Apr; 24(8):8547-54. PubMed ID: 27137292
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photonic approach for microwave spectral analysis based on Fourier cosine transform.
    Wang Y; Chi H; Zhang X; Zheng S; Jin X
    Opt Lett; 2011 Oct; 36(19):3897-9. PubMed ID: 21964134
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Absolute phase birefringence dispersion in polarization-maintaining fiber or birefringent crystal retrieved from a channeled spectrum.
    Hlubina P; Ciprian D
    Opt Lett; 2010 May; 35(10):1566-8. PubMed ID: 20479810
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Measurement of the chromatic dispersion of an optical fiber by use of a Sagnac interferometer employing asymmetric modulation.
    Abedin KS; Hyodo M; Onodera N
    Opt Lett; 2000 Mar; 25(5):299-301. PubMed ID: 18059860
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Application of the windowed-Fourier-transform-based fringe analysis technique for investigating temperature and concentration fields in fluids.
    Mohanan S; Srivastava A
    Appl Opt; 2014 Apr; 53(11):2331-44. PubMed ID: 24787402
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chromatic dispersion measurements using a virtually referenced interferometer.
    Galle MA; Saini SS; Mohammed WS; Qian L
    Opt Lett; 2012 May; 37(10):1598-600. PubMed ID: 22627508
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spectral interferometry and reflectometry used for characterization of a multilayer mirror.
    Hlubina P; Lunácek J; Ciprian D
    Opt Lett; 2009 May; 34(10):1564-6. PubMed ID: 19448822
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alignment-free dispersion measurement with interfering biphotons.
    Riazi A; Zhu EY; Chen C; Gladyshev AV; Kazansky PG; Qian L
    Opt Lett; 2019 Mar; 44(6):1484-1487. PubMed ID: 30874682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.