These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 24663534)
1. Homogenization of quasi-1d metamaterials and the problem of extended bandwidth. Goncharenko AV; Venger EF; Pinchuk AO Opt Express; 2014 Feb; 22(3):2429-42. PubMed ID: 24663534 [TBL] [Abstract][Full Text] [Related]
8. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials. Kaipurath RM; Pietrzyk M; Caspani L; Roger T; Clerici M; Rizza C; Ciattoni A; Di Falco A; Faccio D Sci Rep; 2016 Jun; 6():27700. PubMed ID: 27292270 [TBL] [Abstract][Full Text] [Related]
9. One-Dimensional Chirality: Strong Optical Activity in Epsilon-Near-Zero Metamaterials. Rizza C; Di Falco A; Scalora M; Ciattoni A Phys Rev Lett; 2015 Jul; 115(5):057401. PubMed ID: 26274441 [TBL] [Abstract][Full Text] [Related]
10. Determination of the effective constitutive parameters of bianisotropic planar metamaterials in the terahertz region. Jing X; Xia R; Wang W; Tian Y; Hong Z J Opt Soc Am A Opt Image Sci Vis; 2016 May; 33(5):954-61. PubMed ID: 27140893 [TBL] [Abstract][Full Text] [Related]
11. Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials. Ginzburg P; Rodríguez Fortuño FJ; Wurtz GA; Dickson W; Murphy A; Morgan F; Pollard RJ; Iorsh I; Atrashchenko A; Belov PA; Kivshar YS; Nevet A; Ankonina G; Orenstein M; Zayats AV Opt Express; 2013 Jun; 21(12):14907-17. PubMed ID: 23787679 [TBL] [Abstract][Full Text] [Related]
12. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Molesky S; Dewalt CJ; Jacob Z Opt Express; 2013 Jan; 21 Suppl 1():A96-110. PubMed ID: 23389280 [TBL] [Abstract][Full Text] [Related]
13. Experimental demonstration of near-infrared epsilon-near-zero multilayer metamaterial slabs. Yang X; Hu C; Deng H; Rosenmann D; Czaplewski DA; Gao J Opt Express; 2013 Oct; 21(20):23631-9. PubMed ID: 24104275 [TBL] [Abstract][Full Text] [Related]
14. Continuously tuning effective refractive index based on thermally controllable magnetic metamaterials. Yu X; Chen H; Lin H; Zhou J; Yu J; Qian C; Liu S Opt Lett; 2014 Aug; 39(16):4643-6. PubMed ID: 25121838 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth. Shin J; Shen JT; Fan S Phys Rev Lett; 2009 Mar; 102(9):093903. PubMed ID: 19392520 [TBL] [Abstract][Full Text] [Related]
17. Repulsion of polarised particles from anisotropic materials with a near-zero permittivity component. Rodríguez-Fortuño FJ; Zayats AV Light Sci Appl; 2016 Jan; 5(1):e16022. PubMed ID: 30167119 [TBL] [Abstract][Full Text] [Related]
18. Spatial Power Combination for Omnidirectional Radiation via Anisotropic Metamaterials. Cheng Q; Jiang WX; Cui TJ Phys Rev Lett; 2012 May; 108(21):213903. PubMed ID: 23003254 [TBL] [Abstract][Full Text] [Related]
19. Effective Parameters for 1D Photonic Crystals with Isotropic and Anisotropic Magnetic Inclusions: Coherent Wave Homogenization Theory. Méndez JF; Reyes ACP; Moreno MM; Morales-Sánchez A; Minquiz GM; Lázaro RCA; Leal HV; García FC Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32213922 [TBL] [Abstract][Full Text] [Related]
20. Elastic Waves Scattering without Conversion in Metamaterials with Simultaneous Zero Indices for Longitudinal and Transverse Waves. Liu F; Liu Z Phys Rev Lett; 2015 Oct; 115(17):175502. PubMed ID: 26551124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]