These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24663626)

  • 1. Laser parallel nanofabrication by single femtosecond pulse near-field ablation using photoresist masks.
    Jipa F; Dinescu A; Filipescu M; Anghel I; Zamfirescu M; Dabu R
    Opt Express; 2014 Feb; 22(3):3356-61. PubMed ID: 24663626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate.
    Harrison RK; Ben-Yakar A
    Opt Express; 2010 Oct; 18(21):22556-71. PubMed ID: 20941153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization-dependent elliptical crater morphologies formed on a silicon surface by single-shot femtosecond laser ablation.
    Ji X; Jiang L; Li X; Han W; Liu Y; Huang Q; Lu Y
    Appl Opt; 2014 Oct; 53(29):6742-8. PubMed ID: 25322377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-scattering effects in femtosecond laser nanoablation.
    Zhang H; Krol DM; Dijkhuis JI; van Oosten D
    Opt Lett; 2013 Dec; 38(23):5032-5. PubMed ID: 24281502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser ablation of silicon using a Bessel-like beam generated by a subwavelength annular aperture structure.
    Yu YY; Chang CK; Lai MW; Huang LS; Lee CK
    Appl Opt; 2011 Dec; 50(34):6384-90. PubMed ID: 22192990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond laser damage threshold of pulse compression gratings for petawatt scale laser systems.
    Poole P; Trendafilov S; Shvets G; Smith D; Chowdhury E
    Opt Express; 2013 Nov; 21(22):26341-51. PubMed ID: 24216857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses.
    Yao JW; Zhang CY; Liu HY; Dai QF; Wu LJ; Lan S; Gopal AV; Trofimov VA; Lysak TM
    Opt Express; 2012 Jan; 20(2):905-11. PubMed ID: 22274437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncertainty improvement of geometrical thickness and refractive index measurement of a silicon wafer using a femtosecond pulse laser.
    Maeng S; Park J; O B; Jin J
    Opt Express; 2012 May; 20(11):12184-90. PubMed ID: 22714206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon.
    Derrien TJ; Krüger J; Itina TE; Höhm S; Rosenfeld A; Bonse J
    Opt Express; 2013 Dec; 21(24):29643-55. PubMed ID: 24514516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond laser-induced blazed periodic grooves on metals.
    Hwang TY; Guo C
    Opt Lett; 2011 Jul; 36(13):2575-7. PubMed ID: 21725484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric femtosecond laser ablation of silicon surface governed by the evolution of surface nanostructures.
    Zhang CY; Yao JW; Li CQ; Dai QF; Lan S; Trofimov VA; Lysak TM
    Opt Express; 2013 Feb; 21(4):4439-46. PubMed ID: 23481977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-D patterning of silicon by laser-initiated, liquid-assisted colloidal (LILAC) lithography.
    Ulmeanu M; Grubb MP; Jipa F; Quignon B; Ashfold MN
    J Colloid Interface Sci; 2015 Jun; 447():258-62. PubMed ID: 25465198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon.
    Vorobyev AY; Guo C
    Opt Express; 2011 Sep; 19 Suppl 5():A1031-6. PubMed ID: 21935245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dip-In Photoresist for Photoinhibited Two-Photon Lithography to Realize High-Precision Direct Laser Writing on Wafer.
    Cao C; Qiu Y; Guan L; Wei Z; Yang Z; Zhan L; Zhu D; Ding C; Shen X; Xia X; Kuang C; Liu X
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):31332-31342. PubMed ID: 35786857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution laser lithography system based on two-dimensional acousto-optic deflection.
    Koechlin M; Poberaj G; Günter P
    Rev Sci Instrum; 2009 Aug; 80(8):085105. PubMed ID: 19725679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system.
    Ji J; Hu Y; Meng Y; Zhang J; Xu J; Li S; Yang G
    Nanotechnology; 2016 May; 27(18):185303. PubMed ID: 27010406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical far- and near-field femtosecond laser ablation of Si for nanoscale chemical analysis.
    Zorba V; Mao X; Russo RE
    Anal Bioanal Chem; 2010 Jan; 396(1):173-80. PubMed ID: 19787342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical absorption and photocurrent enhancement in semi-insulating gallium arsenide by femtosecond laser pulse surface microstructuring.
    Zhao ZY; Song ZQ; Shi WZ; Zhao QZ
    Opt Express; 2014 May; 22(10):11654-9. PubMed ID: 24921287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography.
    Luo J; Zeng B; Wang C; Gao P; Liu K; Pu M; Jin J; Zhao Z; Li X; Yu H; Luo X
    Nanoscale; 2015 Nov; 7(44):18805-12. PubMed ID: 26507847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate near-field lithography modeling and quantitative mapping of the near-field distribution of a plasmonic nanoaperture in a metal.
    Kim Y; Jung H; Kim S; Jang J; Lee JY; Hahn JW
    Opt Express; 2011 Sep; 19(20):19296-309. PubMed ID: 21996870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.