These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 24663728)
1. Reconfigurable terahertz metamaterial device with pressure memory. Wang J; Liu S; Guruswamy S; Nahata A Opt Express; 2014 Feb; 22(4):4065-74. PubMed ID: 24663728 [TBL] [Abstract][Full Text] [Related]
2. Liquid metal-based plasmonics. Wang J; Liu S; Vardeny ZV; Nahata A Opt Express; 2012 Jan; 20(3):2346-53. PubMed ID: 22330473 [TBL] [Abstract][Full Text] [Related]
3. Reconfigurable plasmonic devices using liquid metals. Wang J; Liu S; Nahata A Opt Express; 2012 May; 20(11):12119-26. PubMed ID: 22714198 [TBL] [Abstract][Full Text] [Related]
4. Influence of water on the interfacial behavior of gallium liquid metal alloys. Khan MR; Trlica C; So JH; Valeri M; Dickey MD ACS Appl Mater Interfaces; 2014 Dec; 6(24):22467-73. PubMed ID: 25469554 [TBL] [Abstract][Full Text] [Related]
5. Electrolytic reduction of liquid metal oxides and its application to reconfigurable structured devices. Wang J; Appusamy K; Guruswamy S; Nahata A Sci Rep; 2015 Mar; 5():8637. PubMed ID: 25727894 [TBL] [Abstract][Full Text] [Related]
6. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy. Ling K; Kim HK; Yoo M; Lim S Sensors (Basel); 2015 Nov; 15(11):28154-65. PubMed ID: 26561815 [TBL] [Abstract][Full Text] [Related]
8. MEMS reconfigurable metamaterial for terahertz switchable filter and modulator. Han Z; Kohno K; Fujita H; Hirakawa K; Toshiyoshi H Opt Express; 2014 Sep; 22(18):21326-39. PubMed ID: 25321511 [TBL] [Abstract][Full Text] [Related]
9. Frequency-Switchable Microfluidic CSRR-Loaded QMSIW Band-Pass Filter Using a Liquid Metal Alloy. Eom S; Memon MU; Lim S Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28350355 [TBL] [Abstract][Full Text] [Related]
10. A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing. Thelen J; Dickey MD; Ward T Lab Chip; 2012 Oct; 12(20):3961-7. PubMed ID: 22895484 [TBL] [Abstract][Full Text] [Related]
11. Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS). Ling K; Kim K; Lim S Opt Express; 2015 Aug; 23(16):21375-83. PubMed ID: 26367985 [TBL] [Abstract][Full Text] [Related]
12. Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces. Liu Z; Huang CY; Liu H; Zhang X; Lee C Opt Express; 2013 Mar; 21(5):6519-25. PubMed ID: 23482222 [TBL] [Abstract][Full Text] [Related]
13. Steering liquid metal flow in microchannels using low voltages. Tang SY; Lin Y; Joshipura ID; Khoshmanesh K; Dickey MD Lab Chip; 2015 Oct; 15(19):3905-11. PubMed ID: 26279150 [TBL] [Abstract][Full Text] [Related]
14. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal. Kim HK; Lee D; Lim S Sci Rep; 2016 Aug; 6():31823. PubMed ID: 27546310 [TBL] [Abstract][Full Text] [Related]
15. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors. Nouman MT; Kim HW; Woo JM; Hwang JH; Kim D; Jang JH Sci Rep; 2016 May; 6():26452. PubMed ID: 27194128 [TBL] [Abstract][Full Text] [Related]
17. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS). Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874 [TBL] [Abstract][Full Text] [Related]
18. Hybrid metamaterial design and fabrication for terahertz resonance response enhancement. Lim CS; Hong MH; Chen ZC; Han NR; Luk'yanchuk B; Chong TC Opt Express; 2010 Jun; 18(12):12421-9. PubMed ID: 20588369 [TBL] [Abstract][Full Text] [Related]
20. Metamaterial terahertz switch based on split-ring resonator embedded with photoconductive silicon. Liu X; Liu H; Sun Q; Huang N Appl Opt; 2015 Apr; 54(11):3478-83. PubMed ID: 25967340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]