These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24663747)

  • 1. Optical damage threshold of Au nanowires in strong femtosecond laser fields.
    Summers AM; Ramm AS; Paneru G; Kling MF; Flanders BN; Trallero-Herrero CA
    Opt Express; 2014 Feb; 22(4):4235-46. PubMed ID: 24663747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits.
    Framme C; Schuele G; Roider J; Kracht D; Birngruber R; Brinkmann R
    Ophthalmic Surg Lasers; 2002; 33(5):400-9. PubMed ID: 12358294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond laser damage threshold of pulse compression gratings for petawatt scale laser systems.
    Poole P; Trendafilov S; Shvets G; Smith D; Chowdhury E
    Opt Express; 2013 Nov; 21(22):26341-51. PubMed ID: 24216857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission of intense femtosecond laser pulses into dielectrics.
    Peñano JR; Sprangle P; Hafizi B; Manheimer W; Zigler A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036412. PubMed ID: 16241584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-linear optical properties of zinc oxide nanowires.
    Tang CF; Deng H; Tang B; Cheng H; Wang JC; Chen JJ
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1150-4. PubMed ID: 18468114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postionization regimes of femtosecond laser pulses self-channeling in air.
    Champeaux S; Bergé L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046604. PubMed ID: 15903803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Safety evaluation of femtosecond lentotomy on the porcine lens by optical measurement with 50-femtosecond laser pulses.
    Zhang J; Wang R; Chen B; Ye P; Zhang W; Zhao H; Zhen J; Huang Y; Wei Z; Gu Y
    Lasers Surg Med; 2013 Sep; 45(7):450-9. PubMed ID: 23926059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronizing single-shot high-energy iodine photodissociation laser PALS and high-repetition-rate femtosecond Ti:sapphire laser system.
    Dostal J; Dudzak R; Pisarczyk T; Pfeifer M; Huynh J; Chodukowski T; Kalinowska Z; Krousky E; Skala J; Hrebicek J; Medrik T; Golasowski J; Juha L; Ullschmied J
    Rev Sci Instrum; 2017 Apr; 88(4):045109. PubMed ID: 28456257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photofragmentation of Na2+ in intense femtosecond laser fields: from photodissociation on light-induced potentials to field ionization.
    Assion A; Baumert T; Weichmann U; Gerber G
    Phys Rev Lett; 2001 Jun; 86(25):5695-8. PubMed ID: 11415335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise ablation of skin with reduced collateral damage using the femtosecond-pulsed, terawatt titanium-sapphire laser.
    Frederickson KS; White WE; Wheeland RG; Slaughter DR
    Arch Dermatol; 1993 Aug; 129(8):989-93. PubMed ID: 8352623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C60 in intense short pulse laser fields down to 9 fs: excitation on time scales below e-e and e-phonon coupling.
    Shchatsinin I; Laarmann T; Stibenz G; Steinmeyer G; Stalmashonak A; Zhavoronkov N; Schulz CP; Hertel IV
    J Chem Phys; 2006 Nov; 125(19):194320. PubMed ID: 17129116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of corneal ablation with picosecond laser pulses at 211 nm and 263 nm.
    Hu XH; Juhasz T
    Lasers Surg Med; 1996; 18(4):373-80. PubMed ID: 8732576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers.
    Lee HW; Schmidt MA; Russell RF; Joly NY; Tyagi HK; Uebel P; Russell PS
    Opt Express; 2011 Jun; 19(13):12180-9. PubMed ID: 21716455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apparatus for laser-assisted electron scattering in femtosecond intense laser fields.
    Kanya R; Morimoto Y; Yamanouchi K
    Rev Sci Instrum; 2011 Dec; 82(12):123105. PubMed ID: 22225197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproductive death of cancer cells induced by femtosecond laser pulses.
    Thøgersen J; Knudsen CS; Maetzke A; Jensen SJ; Keiding SR; Alsner J; Overgaard J
    Int J Radiat Biol; 2007 May; 83(5):289-99. PubMed ID: 17457754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond laser induced synthesis of Au nanoparticles mediated by chitosan.
    Ferreira PH; Vivas MG; De Boni L; dos Santos DS; Balogh DT; Misoguti L; Mendonca CR
    Opt Express; 2012 Jan; 20(1):518-23. PubMed ID: 22274373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noble metal nanowires: from plasmon waveguides to passive and active devices.
    Lal S; Hafner JH; Halas NJ; Link S; Nordlander P
    Acc Chem Res; 2012 Nov; 45(11):1887-95. PubMed ID: 23102053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond spectral pulse shaping with holographic gratings recorded in photopolymerizable glasses.
    Hernández-Garay MP; Martínez-Matos O; Izquierdo JG; Calvo ML; Vaveliuk P; Cheben P; Bañares L
    Opt Express; 2011 Jan; 19(2):1516-27. PubMed ID: 21263693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-compression of high-energy femtosecond pulses using gas ionization.
    Dutin CF; Dubrouil A; Petit S; Mével E; Constant E; Descamps D
    Opt Lett; 2010 Jan; 35(2):253-5. PubMed ID: 20081985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carrier relaxation and lattice heating dynamics in silicon revealed by femtosecond electron diffraction.
    Harb M; Ernstorfer R; Dartigalongue T; Hebeisen CT; Jordan RE; Miller RJ
    J Phys Chem B; 2006 Dec; 110(50):25308-13. PubMed ID: 17165976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.