These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24663781)

  • 1. Improvement of performance of liquid crystal microlens with polymer surface modification.
    Hwang SJ; Liu YX; Porter GA
    Opt Express; 2014 Feb; 22(4):4620-7. PubMed ID: 24663781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization.
    Hsu CJ; Sheu CR
    Opt Express; 2011 Aug; 19(16):14999-5008. PubMed ID: 21934861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable liquid crystal microlenses with crater polymer prepared by droplet evaporation.
    Hwang SJ; Liu YX; Porter GA
    Opt Express; 2013 Dec; 21(25):30731-8. PubMed ID: 24514649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab.
    Zhao X; Liu C; Zhang D; Luo Y
    Appl Opt; 2012 May; 51(15):3024-30. PubMed ID: 22614606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically Controlled Liquid Crystal Microlens Array Based on Single-Crystal Graphene Coupling Alignment for Plenoptic Imaging.
    Chen M; Shao Q; He W; Wei D; Hu C; Shi J; Liu K; Wang H; Xie C; Zhang X
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33256175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optically isotropic, electrically tunable liquid crystal droplet arrays formed by photopolymerization-induced phase separation.
    Dai H; Chen L; Zhang B; Si G; Liu YJ
    Opt Lett; 2015 Jun; 40(12):2723-6. PubMed ID: 26076246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization-insensitive liquid crystal microlens array with dual focal modes.
    Hsu CJ; Liao CH; Chen BL; Chih SY; Huang CY
    Opt Express; 2014 Oct; 22(21):25925-30. PubMed ID: 25401625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix.
    Yu JH; Chen HS; Chen PJ; Song KH; Noh SC; Lee JM; Ren H; Lin YH; Lee SH
    Opt Express; 2015 Jun; 23(13):17337-44. PubMed ID: 26191743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of low polymer content in a liquid-crystal microlens.
    Nose T; Masuda S; Sato S; Li J; Chien LC; Bos PJ
    Opt Lett; 1997 Mar; 22(6):351-3. PubMed ID: 18183198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials.
    Ji HS; Kim JH; Kumar S
    Opt Lett; 2003 Jul; 28(13):1147-9. PubMed ID: 12879936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alignment of liquid crystals by polymers with residual amounts of solvents.
    Parshin AM; Zyryanov VY; Shabanov VF
    Sci Rep; 2017 Jun; 7(1):3042. PubMed ID: 28596612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization-independent and fast tunable microlens array based on blue phase liquid crystals.
    Lin SH; Huang LS; Lin CH; Kuo CT
    Opt Express; 2014 Jan; 22(1):925-30. PubMed ID: 24515052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically-Tunable Blue Phase Liquid Crystal Microlens Array Based on a Photoconductive Film.
    Huang BY; Huang SY; Chuang CH; Kuo CT
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31906448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compound liquid crystal microlens array with convergent and divergent functions.
    Kang S; Zhang X
    Appl Opt; 2016 Apr; 55(12):3333-8. PubMed ID: 27140107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals.
    Hsu CJ; Sheu CR
    Opt Express; 2012 Feb; 20(4):4738-46. PubMed ID: 22418230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive liquid crystal microlens array enabled by two-photon polymerization.
    He Z; Lee YH; Chanda D; Wu ST
    Opt Express; 2018 Aug; 26(16):21184-21193. PubMed ID: 30119422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications.
    Lin YH; Chen HS
    Opt Express; 2013 Apr; 21(8):9428-36. PubMed ID: 23609654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-optical controlling of the focal intensity of a liquid crystal polymer microlens array.
    Huang SY; Tung TC; Jau HC; Liu JH; Fuh AY
    Appl Opt; 2011 Oct; 50(30):5883-8. PubMed ID: 22015416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ommatidia structure based on double layers of liquid crystal microlens array.
    Kang S; Qing T; Sang H; Zhang X; Xie C
    Appl Opt; 2013 Nov; 52(33):7912-8. PubMed ID: 24513741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrically tunable plenoptic camera using a liquid crystal microlens array.
    Lei Y; Tong Q; Zhang X; Sang H; Ji A; Xie C
    Rev Sci Instrum; 2015 May; 86(5):053101. PubMed ID: 26026508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.