These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 24663795)

  • 1. Volumetric imaging of turbulent reactive flows at kHz based on computed tomography.
    Li X; Ma L
    Opt Express; 2014 Feb; 22(4):4768-78. PubMed ID: 24663795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental demonstration of 4D imaging in two-phase flows based on computed tomography at 5  kHz.
    Wu Y; Lei Q; Ma L
    Appl Opt; 2014 Aug; 53(24):5547-53. PubMed ID: 25321132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical aspects of implementing three-dimensional tomography inversion for volumetric flame imaging.
    Cai W; Li X; Ma L
    Appl Opt; 2013 Nov; 52(33):8106-16. PubMed ID: 24513765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct comparison of two-dimensional and three-dimensional laser-induced fluorescence measurements on highly turbulent flames.
    Ma L; Lei Q; Capil T; Hammack SD; Carter CD
    Opt Lett; 2017 Jan; 42(2):267-270. PubMed ID: 28081089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-shot volumetric laser induced fluorescence (VLIF) measurements in turbulent flows seeded with iodine.
    Wu Y; Xu W; Lei Q; Ma L
    Opt Express; 2015 Dec; 23(26):33408-18. PubMed ID: 26832005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence.
    Mohri K; Görs S; Schöler J; Rittler A; Dreier T; Schulz C; Kempf A
    Appl Opt; 2017 Sep; 56(26):7385-7395. PubMed ID: 29048060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved measurements of a swirl flame at 4  kHz via computed tomography of chemiluminescence.
    Yu T; Ruan C; Liu H; Cai W; Lu X
    Appl Opt; 2018 Jul; 57(21):5962-5969. PubMed ID: 30118020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence.
    Cai W; Li X; Li F; Ma L
    Opt Express; 2013 Mar; 21(6):7050-64. PubMed ID: 23546088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-directional 3D flame chemiluminescence tomography based on lens imaging.
    Wang J; Song Y; Li ZH; Kempf A; He AZ
    Opt Lett; 2015 Apr; 40(7):1231-4. PubMed ID: 25831300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of 2D and 3D flame topography measured by planar laser-induced fluorescence and tomographic chemiluminescence.
    Ma L; Wu Y; Xu W; Hammack SD; Lee T; Carter CD
    Appl Opt; 2016 Jul; 55(20):5310-5. PubMed ID: 27409304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D flame topography obtained by tomographic chemiluminescence with direct comparison to planar Mie scattering measurements.
    Xu W; Wickersham AJ; Wu Y; He F; Ma L
    Appl Opt; 2015 Mar; 54(9):2174-82. PubMed ID: 25968497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the quantification of spatial resolution for three-dimensional computed tomography of chemiluminescence.
    Yu T; Liu H; Cai W
    Opt Express; 2017 Oct; 25(20):24093-24108. PubMed ID: 29041356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid diagnostic for optimizing domain size and resolution of 3D measurements.
    Liu N; Ma L
    Opt Lett; 2018 Aug; 43(16):3842-3845. PubMed ID: 30106897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid algorithm for three-dimensional flame chemiluminescence tomography based on imaging overexposure compensation.
    Jin Y; Song Y; Qu X; Li Z; Ji Y; He A
    Appl Opt; 2016 Aug; 55(22):5917-23. PubMed ID: 27505371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-color volumetric laser-induced fluorescence for 3D OH and temperature fields in turbulent reacting flows.
    Halls BR; Hsu PS; Roy S; Meyer TR; Gord JR
    Opt Lett; 2018 Jun; 43(12):2961-2964. PubMed ID: 29905734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional rapid flame chemiluminescence tomography via deep learning.
    Jin Y; Zhang W; Song Y; Qu X; Li Z; Ji Y; He A
    Opt Express; 2019 Sep; 27(19):27308-27334. PubMed ID: 31674595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Line Raman, Rayleigh, and laser-induced predissociation fluorescence technique for combustion with a tunable KrF excimer laser.
    Mansour MS; Chen YC
    Appl Opt; 1996 Jul; 35(21):4252-60. PubMed ID: 21102834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-dimensional-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT-helical scanning.
    Tang X; Hsieh J; Nilsen RA; Dutta S; Samsonov D; Hagiwara A
    Phys Med Biol; 2006 Feb; 51(4):855-74. PubMed ID: 16467583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional dynamic measurements of CH* and C2* concentrations in flame using simultaneous chemiluminescence tomography.
    Jin Y; Song Y; Qu X; Li Z; Ji Y; He A
    Opt Express; 2017 Mar; 25(5):4640-4654. PubMed ID: 28380735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a CH planar laser-induced fluorescence imaging system using a kHz-rate multimode-pumped optical parametric oscillator.
    Miller JD; Engel SR; Tröger JW; Meyer TR; Seeger T; Leipertz A
    Appl Opt; 2012 May; 51(14):2589-600. PubMed ID: 22614478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.