These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 24663901)

  • 1. A compact source condition for modelling focused fields using the pseudospectral time-domain method.
    Munro PR; Engelke D; Sampson DD
    Opt Express; 2014 Mar; 22(5):5599-613. PubMed ID: 24663901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a Taylor series approximation to the Debye-Wolf integral in time-domain numerical electromagnetic simulations.
    Mazzolani A; Macdonald CM; Munro PRT
    J Opt Soc Am A Opt Image Sci Vis; 2022 May; 39(5):927-935. PubMed ID: 36215454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media.
    Liu QH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(4):1044-55. PubMed ID: 18244259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface.
    Sun W; Pan H; Videen G
    Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles.
    Chen G; Yang P; Kattawar GW
    J Opt Soc Am A Opt Image Sci Vis; 2008 Mar; 25(3):785-90. PubMed ID: 18311250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying a mapped pseudospectral time-domain method in simulating diffractive optical elements.
    Gao X; Mirotznik MS; Shi S; Prather DW
    J Opt Soc Am A Opt Image Sci Vis; 2004 May; 21(5):777-85. PubMed ID: 15139430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the symplectic finite-difference time-domain method to light scattering by small particles.
    Zhai PW; Kattawar GW; Yang P; Li C
    Appl Opt; 2005 Mar; 44(9):1650-6. PubMed ID: 15813268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating directivity in the Fourier pseudospectral time-domain method using spherical harmonics.
    Georgiou F; Hornikx M
    J Acoust Soc Am; 2016 Aug; 140(2):855. PubMed ID: 27586717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grid-adaptive Fourier pseudospectral time domain model for the light scattering simulation of atmospheric nonspherical particles.
    Shuai H; Jiaqi Z; Shulei L; Lei L
    Opt Express; 2023 Mar; 31(6):10082-10100. PubMed ID: 37157565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The extended Fourier pseudospectral time-domain method for atmospheric sound propagation.
    Hornikx M; Waxler R; Forssén J
    J Acoust Soc Am; 2010 Oct; 128(4):1632-46. PubMed ID: 20968336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the sub-diffraction focusing phenomenon of light propagation through scattering medium.
    Tseng SH
    Methods; 2018 Mar; 136():75-80. PubMed ID: 29127044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of nondiffracting Bessel beam sources in FDTD for scattering by complex particles.
    Chen A; Wang J; Han Y; Cui Z; Yu M
    Opt Express; 2018 Oct; 26(20):26766-26775. PubMed ID: 30469757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Staggered-grid PSTD on local Fourier basis and its applications to surface tissue modeling.
    Ding M; Chen K
    Opt Express; 2010 Apr; 18(9):9236-50. PubMed ID: 20588771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of thermally induced photoacoustic wave propagation using a pseudospectral time-domain method.
    Sheu YL; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1104-12. PubMed ID: 19473928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scattered field formulation of finite difference time domain for a focused light beam in dense media with lossy materials.
    Challener W; Sendur I; Peng C
    Opt Express; 2003 Nov; 11(23):3160-70. PubMed ID: 19471441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on wide-band scattering of a 2-D target above 1-D randomly rough surface by FDTD method.
    Li J; Guo LX; Jiao YC; Li K
    Opt Express; 2011 Jan; 19(2):1091-100. PubMed ID: 21263648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body-of-revolution finite-difference time-domain for rigorous analysis of three-dimensional axisymmetric transformation optics lenses.
    Wang X; Wu Q; Turpin JP; Werner DH
    Opt Lett; 2013 Jan; 38(1):67-9. PubMed ID: 23282840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of tightly-focused laser beams in the FDTD method.
    Capoğlu IR; Taflove A; Backman V
    Opt Express; 2013 Jan; 21(1):87-101. PubMed ID: 23388899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superposition method for modelling boundaries between media in viscoelastic finite difference time domain simulations.
    Drainville RA; Curiel L; Pichardo S
    J Acoust Soc Am; 2019 Dec; 146(6):4382. PubMed ID: 31893698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical investigation of field enhancement by metal nano-particles using a hybrid FDTD-PSTD algorithm.
    Pernice WH; Payne FP; Gallagher DF
    Opt Express; 2007 Sep; 15(18):11433-43. PubMed ID: 19547501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.