These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24663903)

  • 1. Aberration measurement technique based on an analytical linear model of a through-focus aerial image.
    Yan G; Wang X; Li S; Yang J; Xu D; Erdmann A
    Opt Express; 2014 Mar; 22(5):5623-34. PubMed ID: 24663903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ aberration measurement technique based on principal component analysis of aerial image.
    Duan L; Wang X; Bourov AY; Peng B; Bu P
    Opt Express; 2011 Sep; 19(19):18080-90. PubMed ID: 21935174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerial image based technique for measurement of lens aberrations up to 37th Zernike coefficient in lithographic tools under partial coherent illumination.
    Liu W; Liu S; Zhou T; Wang L
    Opt Express; 2009 Oct; 17(21):19278-91. PubMed ID: 20372664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized formulations for aerial image based lens aberration metrology in lithographic tools with arbitrarily shaped illumination sources.
    Liu W; Liu S; Shi T; Tang Z
    Opt Express; 2010 Sep; 18(19):20096-104. PubMed ID: 20940899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavefront aberration measurement method for a hyper-NA lithographic projection lens based on principal component analysis of an aerial image.
    Zhu B; Wang X; Li S; Yan G; Shen L; Duan L
    Appl Opt; 2016 Apr; 55(12):3192-8. PubMed ID: 27140087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iterative method for in situ measurement of lens aberrations in lithographic tools using CTC-based quadratic aberration model.
    Liu S; Xu S; Wu X; Liu W
    Opt Express; 2012 Jun; 20(13):14272-83. PubMed ID: 22714489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parity decomposition theory of full wavefront aberration measurement using the intensity differences of aerial images in microlithography.
    Yashiki S
    Appl Opt; 2015 Jun; 54(17):5353-63. PubMed ID: 26192835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Even aberration measurement of lithographic projection optics based on intensity difference of adjacent peaks in alternating phase-shifting mask image.
    Peng B; Wang X; Qiu Z; Cao Y; Duan L
    Appl Opt; 2010 May; 49(15):2753-60. PubMed ID: 20490235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distortion measurement of a lithography projection lens based on multichannel grating lateral shearing interferometry.
    Cao Y; Lu Y; Feng P; Qiao X; Ordones S; Su R; Wang X
    Appl Opt; 2024 Mar; 63(8):2056-2064. PubMed ID: 38568647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear phase retrieval with a single far-field image based on Zernike polynomials.
    Li M; Li XY
    Opt Express; 2009 Aug; 17(17):15257-63. PubMed ID: 19688004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse pupil wavefront optimization for immersion lithography.
    Han C; Li Y; Dong L; Ma X; Guo X
    Appl Opt; 2014 Oct; 53(29):6861-71. PubMed ID: 25322394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of through-focus aerial image with aberration and imaginary mask edge effects in optical lithography simulation.
    Yamazoe K; Neureuther AR
    Appl Opt; 2011 Jul; 50(20):3570-8. PubMed ID: 21743568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors.
    Liu T; Thibos L; Marin G; Hernandez M
    Ophthalmic Physiol Opt; 2014 Jan; 34(1):63-72. PubMed ID: 24325435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical approach to the impact of polarization aberration on lithographic imaging.
    Tu Y; Wang X; Li S; Cao Y
    Opt Lett; 2012 Jun; 37(11):2061-3. PubMed ID: 22660121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical correction of aberrations via phase retrieval with speckle illumination.
    Almoro PF; Gundu PN; Hanson SG
    Opt Lett; 2009 Feb; 34(4):521-3. PubMed ID: 19373361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbative analysis of partially coherent illumination for coma aberration measurements.
    Yashiki S
    J Opt Soc Am A Opt Image Sci Vis; 2015 Apr; 32(4):669-77. PubMed ID: 26366778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise robust Zernike phase retrieval via learning based algorithm only with 2-step phase shift measurements.
    Kim H; Jeong Y; Lee K; Jeong Y
    Opt Express; 2023 Sep; 31(19):30248-30266. PubMed ID: 37710571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aberration analysis and compensate method of a BP neural network and sparrow search algorithm in deep ultraviolet lithography.
    Zhang S; Zhang L; Gai T; Xu P; Wei Y
    Appl Opt; 2022 Jul; 61(20):6023-6032. PubMed ID: 36255838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Zernike polynomials for efficient estimation of orthonormal aberration coefficients over variable noncircular pupils.
    Lee H
    Opt Lett; 2010 Jul; 35(13):2173-5. PubMed ID: 20596184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnification and wavefront aberration correction by a geometric-phase lens in a polarized aerial display using a right-angle prism.
    Momosaki R; Ashikawa K; Yamada K; Sakamoto M; Noda K; Sasaki T; Kawatsuki N; Tanaka Y; Sakai T; Hattori Y; Ono H
    Appl Opt; 2021 Aug; 60(23):6748-6754. PubMed ID: 34613152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.