These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24663927)

  • 41. Photoresponse of a Single Y-Junction Carbon Nanotube.
    Samanta S; Saini D; Singha A; Das K; Bandaru PR; Rao AM; Raychaudhuri AK
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):19024-30. PubMed ID: 27379988
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Terahertz Wave Propagation in a Nanotube Conveying Fluid Taking into Account Surface Effect.
    Zhang YW; Yang TZ; Zang J; Fang B
    Materials (Basel); 2013 Jun; 6(6):2393-2399. PubMed ID: 28809279
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Terahertz generation and chaotic dynamics in single-walled zigzag carbon nanotubes.
    Wang C; Cao JC
    Chaos; 2009 Sep; 19(3):033136. PubMed ID: 19792016
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ZnSe nanowire/Si p-n heterojunctions: device construction and optoelectronic applications.
    Zhang X; Zhang X; Wang L; Wu Y; Wang Y; Gao P; Han Y; Jie J
    Nanotechnology; 2013 Oct; 24(39):395201. PubMed ID: 24013310
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sharp burnout failure observed in high current-carrying double-walled carbon nanotube fibers.
    Song L; Toth G; Wei J; Liu Z; Gao W; Ci L; Vajtai R; Endo M; Ajayan PM
    Nanotechnology; 2012 Jan; 23(1):015703. PubMed ID: 22156276
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Excitation of Surface Plasmon Resonance on Multiwalled Carbon Nanotube Metasurfaces for Pesticide Sensors.
    Wang Y; Cui Z; Zhang X; Zhang X; Zhu Y; Chen S; Hu H
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):52082-52088. PubMed ID: 33151054
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Observation of Negative Terahertz Photoconductivity in Large Area Type-II Dirac Semimetal PtTe_{2}.
    Suo P; Zhang H; Yan S; Zhang W; Fu J; Lin X; Hao S; Jin Z; Zhang Y; Zhang C; Miao F; Liang SJ; Ma G
    Phys Rev Lett; 2021 Jun; 126(22):227402. PubMed ID: 34152189
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermal radiation from carbon nanotubes in the terahertz range.
    Nemilentsau AM; Slepyan GY; Maksimenko SA
    Phys Rev Lett; 2007 Oct; 99(14):147403. PubMed ID: 17930722
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors.
    Ahn YH; Tsen AW; Kim B; Park YW; Park J
    Nano Lett; 2007 Nov; 7(11):3320-3. PubMed ID: 17939725
    [TBL] [Abstract][Full Text] [Related]  

  • 50. EMI shielding and conductivity of carbon nanotube-polymer composites at terahertz frequency.
    Polley D; Barman A; Mitra RK
    Opt Lett; 2014 Mar; 39(6):1541-4. PubMed ID: 24690833
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heterostructure terahertz devices.
    Ryzhii V
    J Phys Condens Matter; 2008 Aug; 20(38):380301. PubMed ID: 21693805
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gate dependent photo-responses of carbon nanotube field effect phototransistors.
    Chen HZ; Xi N; Lai KW; Chen LL; Yang RG; Song B
    Nanotechnology; 2012 Sep; 23(38):385203. PubMed ID: 22948041
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dominance of plasma-induced modulation in terahertz generation from gas filament.
    Guo H; Du H; Zhan Q; Zhang X; Wang W; Liu C
    Opt Express; 2024 Jan; 32(3):4277-4294. PubMed ID: 38297632
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Switching terahertz wave with grating-coupled Kretschmann configuration.
    Jiu-Sheng L
    Opt Express; 2017 Aug; 25(16):19422-19428. PubMed ID: 29041136
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Free-standing single-walled carbon nanotube-CdSe quantum dots hybrid ultrathin films for flexible optoelectronic conversion devices.
    Shi Z; Liu C; Lv W; Shen H; Wang D; Chen L; Li LS; Jin J
    Nanoscale; 2012 Aug; 4(15):4515-21. PubMed ID: 22695781
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells.
    Shankar K; Mor GK; Prakasam HE; Varghese OK; Grimes CA
    Langmuir; 2007 Nov; 23(24):12445-9. PubMed ID: 17958387
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Terahertz wave techniques using a metal mesh for evaluating the components of the stratum corneum.
    Mizukoshi K; Yonekura K; Ogura H; Guan Y; Kawase K
    Skin Res Technol; 2013 Feb; 19(1):e383-9. PubMed ID: 22672498
    [TBL] [Abstract][Full Text] [Related]  

  • 59. All-optoelectronic continuous-wave terahertz systems.
    Löffler T; Siebert KJ; Quast H; Hasegawa N; Loata G; Wipf R; Hahn T; Thomson M; Leonhardt R; Roskos HG
    Philos Trans A Math Phys Eng Sci; 2004 Feb; 362(1815):263-79; discussion 279-81. PubMed ID: 15306519
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Broadband high-absorbance coating for terahertz radiometry.
    Deng Y; Sun Q; Yu J; Lin Y; Wang J
    Opt Express; 2013 Mar; 21(5):5737-42. PubMed ID: 23482145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.